RESUMEN
We describe the synthesis and biological evaluation of a series of novel aryl sulfonamides that exhibit potent inhibition of NaV1.5. Unlike local anesthetics that are currently used for treatment of Long QT Syndrome 3 (LQT-3), the most potent compound (-)-6 in this series shows high selectivity over hERG and other cardiac ion channels and has a low brain to plasma ratio to minimize CNS side effects. Compound (-)-6 is also effective inshortening prolonged action potential durations (APDs) in a pharmacological model of LQT-3 syndrome in pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Unlike most aryl sulfonamide NaV inhibitors that bind to the channel voltage sensors, these NaV1.5 inhibitors bind to the local anesthetic binding site in the central pore of the channel.
Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sulfonamidas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/químicaRESUMEN
AIM: Inhibition of cyclooxygenase-2 (COX-2) is proposed as a treatment option in several cancer types. However, in non-small cell lung cancer (NSCLC), phase III trials have failed to demonstrate a benefit of adding COX-2 inhibitors to standard chemotherapy. The aim of this study was to analyze COX-2 expression in tumor and stromal cells as predictive biomarker for COX-2 inhibition. METHODS: In a multicenter phase III trial, 316 patients with advanced NSCLC were randomized to receive celecoxib (400 mg b.i.d.) or placebo up to one year in addition to a two-drug platinum-based chemotherapy combination. In a subset of 122 patients, archived tumor tissue was available for immunohistochemical analysis of COX-2 expression in tumor and stromal cells. For each compartment, COX-2 expression was graded as high or low, based on a product score of extension and intensity of positively stained cells. RESULTS: An updated analysis of all 316 patients included in the original trial, and of the 122 patients with available tumor tissue, showed no survival differences between the celecoxib and placebo arms (HR 1.01; 95% CI 0.81-1.27 and HR 1.12; 95% CI 0.78-1.61, respectively). High COX-2 scores in tumor (n = 71) or stromal cells (n = 55) was not associated with a superior survival outcome with celecoxib vs. placebo (HR =0.96, 95% CI 0.60-1.54; and HR =1.51; 95% CI 0.86-2.66), and no significant interaction effect between COX-2 score in tumor or stromal cells and celecoxib effect on survival was detected (p = .48 and .25, respectively). CONCLUSIONS: In this subgroup analysis of patients with advanced NSCLC treated within the context of a randomized trial, we could not detect any interaction effect of COX-2 expression in tumor or stromal cells and the outcome of celecoxib treatment in addition to standard chemotherapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Celecoxib/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/análisis , Neoplasias Pulmonares/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Ciclooxigenasa 2/biosíntesis , Supervivencia sin Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Compuestos de Platino/uso terapéutico , Resultado del TratamientoRESUMEN
BACKGROUND AND PURPOSE: Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH: We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS: Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS: Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.
Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6 , Convulsiones , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Convulsiones/tratamiento farmacológico , Ratones , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Masculino , Mutación con Ganancia de Función , Anticonvulsivantes/farmacología , Ratones Endogámicos C57BLRESUMEN
Endothelial lipase (EL) activity has been implicated in HDL metabolism and in atherosclerotic plaque development; inhibitors are proposed to be efficacious in the treatment of dyslipidemia related cardiovascular disease. We describe here the discovery of a novel class of anthranilic acids EL inhibitors. XEN445 (compound 13) was identified as a potent and selective EL inhibitor, that showed good ADME and PK properties, and demonstrated in vivo efficacy in raising plasma HDLc concentrations in mice.
Asunto(s)
Benzoatos/farmacología , HDL-Colesterol/sangre , HDL-Colesterol/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Pirrolidinas/farmacología , Animales , Benzoatos/síntesis química , Benzoatos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Lipasa/deficiencia , Lipasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-ActividadRESUMEN
NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.
Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Animales , Mutación con Ganancia de Función , Ratones , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/fisiología , Ratas , Sodio , Bloqueadores de los Canales de Sodio/farmacologíaRESUMEN
Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.
Asunto(s)
Azetidinas/farmacología , Benzamidas/farmacología , Descubrimiento de Drogas , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Sulfonamidas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Azetidinas/química , Azetidinas/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Células Cultivadas , Células HEK293 , Humanos , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacología , Ratas Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinéticaRESUMEN
Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.
Asunto(s)
Amidas/química , Sistema Nervioso Central/metabolismo , Epilepsia/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Animales , Perros , Células Hep G2 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.6/química , Dominios Proteicos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Relación Estructura-ActividadRESUMEN
Herein, we report the discovery and optimization of a series of orally bioavailable acyl sulfonamide NaV1.7 inhibitors that are selective for NaV1.7 over NaV1.5 and highly efficacious in in vivo models of pain and hNaV1.7 target engagement. An analysis of the physicochemical properties of literature NaV1.7 inhibitors suggested that acyl sulfonamides with high fsp3 could overcome some of the pharmacokinetic (PK) and efficacy challenges seen with existing series. Parallel library syntheses lead to the identification of analogue 7, which exhibited moderate potency against NaV1.7 and an acceptable PK profile in rodents, but relatively poor stability in human liver microsomes. Further, design strategy then focused on the optimization of potency against hNaV1.7 and improvement of human metabolic stability, utilizing induced fit docking in our previously disclosed X-ray cocrystal of the NaV1.7 voltage sensing domain. These investigations culminated in the discovery of tool compound 33, one of the most potent and efficacious NaV1.7 inhibitors reported to date.
Asunto(s)
Analgésicos/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Sulfonamidas/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Analgésicos/metabolismo , Analgésicos/uso terapéutico , Animales , Sitios de Unión , Diseño de Fármacos , Semivida , Humanos , Masculino , Ratones , Ratones Transgénicos , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/patología , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Sulfonamidas/metabolismo , Sulfonamidas/uso terapéutico , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéuticoRESUMEN
Selective block of NaV1.7 promises to produce non-narcotic analgesic activity without motor or cognitive impairment. Several NaV1.7-selective blockers have been reported, but efficacy in animal pain models required high multiples of the IC50 for channel block. Here, we report a target engagement assay using transgenic mice that has enabled the development of a second generation of selective Nav1.7 inhibitors that show robust analgesic activity in inflammatory and neuropathic pain models at low multiples of the IC50. Like earlier arylsulfonamides, these newer acylsulfonamides target a binding site on the surface of voltage sensor domain 4 to achieve high selectivity among sodium channel isoforms and steeply state-dependent block. The improved efficacy correlates with very slow dissociation from the target channel. Chronic dosing increases compound potency about 10-fold, possibly due to reversal of sensitization arising during chronic injury, and provides efficacy that persists long after the compound has cleared from plasma.
Asunto(s)
Analgésicos/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/uso terapéutico , Sulfonamidas/uso terapéutico , Analgésicos/farmacocinética , Animales , Sitios de Unión , Células Cultivadas , Células HEK293 , Humanos , Concentración 50 Inhibidora , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/química , Unión Proteica , Bloqueadores de los Canales de Sodio/farmacocinética , Sulfonamidas/farmacocinéticaRESUMEN
PURPOSE: Chemotherapies are associated with significant interindividual variability in therapeutic effect and adverse drug reactions. In lung cancer, the use of gemcitabine and carboplatin induces grade 3 or 4 myelosuppression in about a quarter of the patients, while an equal fraction of patients is basically unaffected in terms of myelosuppressive side effects. We therefore set out to identify genetic markers for gemcitabine/carboplatin-induced myelosuppression. EXPERIMENTAL DESIGN: We exome sequenced 32 patients that suffered extremely high neutropenia and thrombocytopenia (grade 3 or 4 after first chemotherapy cycle) or were virtually unaffected (grade 0 or 1). The genetic differences/polymorphism between the groups were compared using six different bioinformatics strategies: (i) whole-exome nonsynonymous single-nucleotide variants association analysis, (ii) deviation from Hardy-Weinberg equilibrium, (iii) analysis of genes selected by a priori biologic knowledge, (iv) analysis of genes selected from gene expression meta-analysis of toxicity datasets, (v) Ingenuity Pathway Analysis, and (vi) FunCoup network enrichment analysis. RESULTS: A total of 53 genetic variants that differed among these groups were validated in an additional 291 patients and were correlated to the patients' myelosuppression. In the validation, we identified rs1453542 in OR4D6 (P = 0.0008; OR, 5.2; 95% CI, 1.8-18) as a marker for gemcitabine/carboplatin-induced neutropenia and rs5925720 in DDX53 (P = 0.0015; OR, 0.36; 95% CI, 0.17-0.71) as a marker for thrombocytopenia. Patients homozygous for the minor allele of rs1453542 had a higher risk of neutropenia, and for rs5925720 the minor allele was associated with a lower risk for thrombocytopenia. CONCLUSIONS: We have identified two new genetic markers with the potential to predict myelosuppression induced by gemcitabine/carboplatin chemotherapy.
Asunto(s)
Carboplatino/efectos adversos , Desoxicitidina/análogos & derivados , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Exoma/genética , Marcadores Genéticos/genética , Neoplasias Pulmonares/genética , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboplatino/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Desoxicitidina/efectos adversos , Desoxicitidina/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Neutropenia/inducido químicamente , Polimorfismo de Nucleótido Simple/genética , Trombocitopenia/inducido químicamente , GemcitabinaRESUMEN
AIM OF THE STUDY: The primary purpose of this study is to investigate if pretreatment plasma levels of vascular endothelial growth factor (VEGF) are predictive of the effect of celecoxib on survival in advanced non-small cell lung cancer (NSCLC) treated with palliative chemotherapy. A secondary objective is to describe the course of plasma VEGF levels during and after treatment with cytotoxic chemotherapy combined with celecoxib or placebo. METHODS: In a previously published double-blind multicenter phase III trial, 316 patients with NSCLC stage IIIB or IV and World Health Organisation (WHO) performance status 0-2 were randomised to receive celecoxib 400mg b.i.d. or placebo in combination with two-drug platinum-based chemotherapy. Chemotherapy cycle length was three weeks and planned duration of chemotherapy was four cycles. Celecoxib was given for a maximum of one year but was stopped earlier in case of disease progression or prohibitive toxicity. In a subset of patients, plasma VEGF levels were examined at onset of treatment and at 6, 12 and 20 weeks. RESULTS: VEGF levels at start of treatment were obtained in 107 patients at four study sites. The median value was 70 pg/ml. Mean values declined during the first 12 weeks and then increased at 20 weeks. A subpopulation treatment effect pattern plot (STEPP) analysis showed an inverse relationship between initial plasma VEGF and the impact of celecoxib on survival with zero effect at 200 pg/ml. The effect on survival by celecoxib in the whole subset of patients was positive (hazard ratio (HR)=0.64 [confidence interval (CI) 0.43-0.95], p=0.028). CONCLUSION: Low pretreatment plasma levels of VEGF appear to be predictive of a positive effect of celecoxib on survival.