Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 291(9): 4698-710, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26677218

RESUMEN

Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines.


Asunto(s)
Señalización del Calcio/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Proteínas del Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fototransducción , Retina/efectos de la radiación , Transducina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Ciclo del Ácido Cítrico/efectos de la radiación , GMP Cíclico/metabolismo , Transporte de Electrón/efectos de la radiación , Proteínas del Ojo/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Glucólisis/efectos de la radiación , Proteínas de Unión al GTP Heterotriméricas/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Luz , Metaboloma/efectos de la radiación , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Consumo de Oxígeno/efectos de la radiación , Retina/enzimología , Retina/metabolismo , Técnicas de Cultivo de Tejidos , Transducina/genética
2.
Proc Natl Acad Sci U S A ; 111(43): 15579-84, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313047

RESUMEN

Symbiotic relationships between neurons and glia must adapt to structures, functions, and metabolic roles of the tissues they are in. We show here that Müller glia in retinas have specific enzyme deficiencies that can enhance their ability to synthesize Gln. The metabolic cost of these deficiencies is that they impair the Müller cell's ability to metabolize Glc. We show here that the cells can compensate for this deficiency by using metabolites produced by neurons. Müller glia are deficient for pyruvate kinase (PK) and for aspartate/glutamate carrier 1 (AGC1), a key component of the malate-aspartate shuttle. In contrast, photoreceptor neurons express AGC1 and the M2 isoform of pyruvate kinase, which is commonly associated with aerobic glycolysis in tumors, proliferating cells, and some other cell types. Our findings reveal a previously unidentified type of metabolic relationship between neurons and glia. Müller glia compensate for their unique metabolic adaptations by using lactate and aspartate from neurons as surrogates for their missing PK and AGC1.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiportadores/metabolismo , Neuroglía/metabolismo , Piruvato Quinasa/metabolismo , Neuronas Retinianas/metabolismo , Animales , Ácido Aspártico/metabolismo , Isótopos de Carbono , Células Cultivadas , Células Ependimogliales/metabolismo , Células Ependimogliales/efectos de la radiación , Glucosa/metabolismo , Glutamina/metabolismo , Glucólisis , Células HeLa , Humanos , Isoenzimas/metabolismo , Lactosa/metabolismo , Luz , Ratones , Modelos Biológicos , Neuroglía/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Neuronas Retinianas/efectos de la radiación
3.
Cell Death Dis ; 9(2): 240, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445082

RESUMEN

Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6ß. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6ß promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Piruvato Quinasa/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/genética , Transcripción Genética , Animales , Apoptosis/genética , Isótopos de Carbono , Membrana Celular/química , Membrana Celular/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Regulación de la Expresión Génica , Humanos , Etiquetado Corte-Fin in Situ , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Noqueados , NADP/metabolismo , Fosfolípidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/deficiencia , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Transducción de Señal , Coloración y Etiquetado/métodos , Tomografía de Coherencia Óptica , Triglicéridos/metabolismo
4.
Elife ; 62017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28901286

RESUMEN

Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.


Asunto(s)
Adaptación Ocular , Metabolismo Energético , Células Ependimogliales/fisiología , Células Fotorreceptoras/fisiología , Epitelio Pigmentado de la Retina/fisiología , Animales , Células Ependimogliales/metabolismo , Glucosa/metabolismo , Humanos , Lactatos/metabolismo , Ratones , Células Fotorreceptoras/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA