Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890312

RESUMEN

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Asunto(s)
Acetamidas , Antimaláricos , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Acetamidas/farmacología , Acetamidas/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Antimaláricos/química , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Mutación , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Humanos , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos
2.
ACS Infect Dis ; 9(9): 1695-1710, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639221

RESUMEN

With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.


Asunto(s)
Parásitos , Animales , Plasmodium falciparum/genética , Salud Global , Eritrocitos , Transporte de Proteínas , Furanos
3.
Commun Biol ; 6(1): 861, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596377

RESUMEN

The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.


Asunto(s)
Actinas , Plasmodium falciparum , Actinas/genética , Forminas , Plasmodium falciparum/genética , División Celular , Citoesqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA