Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Annu Rev Cell Dev Biol ; 27: 57-77, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21639798

RESUMEN

The Golgi complex processes secretory proteins and lipids, carries out protein sorting and signaling, and supports growth and composition of the plasma membrane. Golgi complex size likely is regulated to meet the demands of each function, and this may involve differential changes of its distinct subdomains. Nevertheless, the primary size change is elongation of the Golgi ribbon-like network as occurs during Golgi complex doubling for mitosis and during differentiation involving upregulated secretion. One hypothesis states that Golgi complex size is set by the abundance of secretory cargo and Golgi complex components that, through binding vesicle coat complexes, drive vesicle coat formation to alter Golgi complex influx and efflux. Regulation of transport factors controlling Golgi membrane traffic is also observed and may control Golgi complex size, but more work is needed to directly link these events to Golgi complex size regulation, especially during differentiation of specialized cell types.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Tamaño de los Orgánulos , Transporte Biológico/fisiología , Ciclo Celular , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Vías Secretoras
2.
Nat Chem Biol ; 16(3): 327-336, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080624

RESUMEN

The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown. Here, we show that Retro-2 targets the endoplasmic reticulum exit site component Sec16A, affecting anterograde transport of syntaxin-5 from the endoplasmic reticulum to the Golgi. The formation of canonical SNARE complexes involving syntaxin-5 is not affected in Retro-2-treated cells. By contrast, the interaction of syntaxin-5 with a newly discovered binding partner, the retrograde trafficking chaperone GPP130, is abolished, and we show that GPP130 must indeed bind to syntaxin-5 to drive Shiga toxin transport from the endosomes to the Golgi. We therefore identify Sec16A as a druggable target and provide evidence for a non-SNARE function for syntaxin-5 in interaction with GPP130.


Asunto(s)
Benzamidas/metabolismo , Proteínas Qa-SNARE/metabolismo , Tiofenos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Benzamidas/farmacología , Transporte Biológico , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Ricina/metabolismo , Toxina Shiga/metabolismo , Toxinas Shiga/metabolismo , Tiofenos/farmacología , Proteínas de Transporte Vesicular/fisiología
3.
J Biol Chem ; 293(51): 19866-19873, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30389789

RESUMEN

The surface glycoprotein (GP) of Ebola virus causes many of the virus's pathogenic effects, including a dramatic loss of endothelial cell adhesion associated with widespread hemorrhaging during infection. Although the GP-mediated deadhesion depends on its extracellular mucin-like domain, it is unknown whether any, or all, of this domain's densely clustered O-glycosylation sites are required. It is also unknown whether any of the 20 distinct polypeptide GalNAc-transferases (ppGalNAc-Ts) that initiate mucin-type O-glycosylation in human cells are functionally required. Here, using HEK293 cell lines lacking specific glycosylation enzymes, we demonstrate that GP requires extended O-glycans to exert its deadhesion effect. We also identified ppGalNAc-T1 as largely required for the GP-mediated adhesion defects. Despite its profound effect on GP function, the absence of ppGalNAc-T1 only modestly reduced the O-glycan mass of GP, indicating that even small changes in the bulky glycodomain can cause loss of GP function. Indeed, protein-mapping studies identified a small segment of the mucin-like domain critical for function and revealed that mutation of five glycan acceptor sites within this segment are sufficient to abrogate GP function. Together, these results argue against a mechanism of Ebola GP-induced cell detachment that depends solely on ectodomain bulkiness and identify a single host-derived glycosylation enzyme, ppGalNAc-T1, as a potential target for therapeutic intervention against Ebola virus disease.


Asunto(s)
Adhesión Celular , Ebolavirus/fisiología , N-Acetilgalactosaminiltransferasas/metabolismo , Proteínas Virales de Fusión/metabolismo , Sitios de Unión , Ebolavirus/metabolismo , Glicosilación , Células HEK293 , Humanos , Unión Proteica , Especificidad por Sustrato , Polipéptido N-Acetilgalactosaminiltransferasa
4.
Traffic ; 14(1): 47-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23046148

RESUMEN

Protein O-glycosylation is important in numerous processes including the regulation of proteolytic processing sites by O-glycan masking in select newly synthesized proteins. To investigate O-glycan-mediated masking using an assay amenable to large-scale screens, we generated a fluorescent biosensor with an O-glycosylation site situated to mask a furin cleavage site. The sensor is activated when O-glycosylation fails to occur because furin cleavage releases a blocking domain allowing dye binding to a fluorogen activating protein. Thus, by design, glycosylation should block furin from activating the sensor only if it occurs first, which is predicted by the conventional view of Golgi organization. Indeed, and in contrast to the recently proposed rapid partitioning model, the sensor was non-fluorescent under normal conditions but became fluorescent when the Golgi complex was decompartmentalized. To test the utility of the sensor as a screening tool, cells expressing the sensor were exposed to a known inhibitor of O-glycosylation extension or siRNAs targeting factors known to alter glycosylation efficiency. These conditions activated the sensor substantiating its potential in identifying new inhibitors and cellular factors related to protein O-glycosylation. In summary, these findings confirm sequential processing in the Golgi, establish a new tool for studying the regulation of proteolytic processing by O-glycosylation, and demonstrate the sensor's potential usefulness for future screening projects.


Asunto(s)
Furina/metabolismo , Aparato de Golgi/metabolismo , Procesamiento Proteico-Postraduccional , Furina/genética , Glicosilación , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Proteolisis
5.
J Biol Chem ; 289(44): 30556-30566, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25225288

RESUMEN

Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms. Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal when glycosylated but was strongly activated in the absence of its glycosylation. Specificity of each sensor was assessed in HEK cells with either the T2 or T3 enzymes deleted. Although the sensors are based on specific substrates of the T2 and T3 enzymes, elements in or near the enzyme recognition sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable in both the study of GalNAc-transferase regulation and in high-throughput screening for potential therapeutic regulators of specific GalNAc-transferases.


Asunto(s)
Colorantes Fluorescentes/química , N-Acetilgalactosaminiltransferasas/fisiología , Fragmentos de Péptidos/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/química , Técnicas Biosensibles , Inhibidores Enzimáticos/farmacología , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/química , Colorantes Fluorescentes/metabolismo , Glicosilación , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/fisiología , Microscopía Fluorescente , N-Acetilgalactosaminiltransferasas/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo
6.
J Biol Chem ; 289(14): 9683-91, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24505136

RESUMEN

The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni(2+)-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering.


Asunto(s)
Proteínas Portadoras/química , Membrana Dobles de Lípidos/química , Lipoilación , Proteínas de la Membrana/química , Membranas Artificiales , Ácido Mirístico/química , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ácido Mirístico/metabolismo , Estructura Terciaria de Proteína
7.
J Cell Sci ; 125(Pt 4): 973-80, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22421362

RESUMEN

Acute inhibition is a powerful technique to test proteins for direct roles and order their activities in a pathway, but as a general gene-based strategy, it is mostly unavailable in mammalian systems. As a consequence, the precise roles of proteins in membrane trafficking have been difficult to assess in vivo. Here we used a strategy based on a genetically encoded fluorescent protein that generates highly localized and damaging reactive oxygen species to rapidly inactivate exit from the endoplasmic reticulum (ER) during live-cell imaging and address the long-standing question of whether the integrity of the Golgi complex depends on constant input from the ER. Light-induced blockade of ER exit immediately perturbed Golgi membranes, and surprisingly, revealed that cis-Golgi-resident proteins continuously cycle to peripheral ER-Golgi intermediate compartment (ERGIC) membranes and depend on ER exit for their return to the Golgi. These experiments demonstrate that ER exit and extensive cycling of cis-Golgi components to the cell periphery sustain the mammalian Golgi complex.


Asunto(s)
Aparato de Golgi/enzimología , Proteínas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de la radiación , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Membranas Intracelulares/enzimología , Membranas Intracelulares/metabolismo , Cinética , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 108(2): 858-63, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187401

RESUMEN

P-type ATPases transport a wide array of ions, regulate diverse cellular processes, and are implicated in a number of human diseases. However, mechanisms that increase ion transport by these ubiquitous proteins are not known. SPCA1 is a P-type pump that transports Mn(2+) from the cytosol into the Golgi. We developed an intra-Golgi Mn(2+) sensor and used it to screen for mutations introduced in SPCA1, on the basis of its predicted structure, which could increase its Mn(2+) pumping activity. Remarkably, a point mutation (Q747A) predicted to increase the size of its ion permeation cavity enhanced the sensor response and a compensatory mutation restoring the cavity to its original size abolished this effect. In vivo and in vitro Mn(2+) transport assays confirmed the hyperactivity of SPCA1-Q747A. Furthermore, increasing Golgi Mn(2+) transport by expression of SPCA1-Q747A increased cell viability upon Mn(2+) exposure, supporting the therapeutic potential of increased Mn(2+) uptake by the Golgi in the management of Mn(2+)-induced neurotoxicity.


Asunto(s)
Adenosina Trifosfatasas/química , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/fisiología , Aparato de Golgi/metabolismo , Manganeso/química , Mutación , ATPasas de Translocación de Protón/química , Alanina/química , ATPasas Transportadoras de Calcio/química , Citosol/metabolismo , Aparato de Golgi/química , Células HeLa , Humanos , Modelos Moleculares , Conformación Molecular , Fosforilación , Mutación Puntual , Proteínas de Transporte Vesicular/química
9.
J Biol Chem ; 287(24): 19870-5, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22523075

RESUMEN

Mitotic phosphorylation of the conserved GRASP domain of GRASP65 disrupts its self-association, leading to a loss of Golgi membrane tethering, cisternal unlinking, and Golgi breakdown. Recently, the structural basis of the GRASP self-interaction was determined, yet the mechanism by which phosphorylation disrupts this activity is unknown. Here, we present the crystal structure of a GRASP phosphomimic containing an aspartic acid substitution for a serine residue (Ser-189) that in GRASP65 is phosphorylated by PLK1, causing a block in membrane tethering and Golgi ribbon formation. The structure revealed a conformational change in the GRASP internal ligand that prevented its insertion into the PDZ binding pocket, and gel filtration assays showed that this phosphomimic mutant exhibited a significant reduction in dimer formation. Interestingly, the structure also revealed an apparent propagation of conformational change from the site of phosphorylation to the shifted ligand, and alanine substitution of two residues (Glu-145 and Ser-146) at penultimate positions in this chain rescued dimer formation by the phosphomimic. These data reveal the structural basis of the phosphoinhibition of GRASP-mediated membrane tethering and provide a mechanism for its allosteric regulation.


Asunto(s)
Proteínas Portadoras/química , Aparato de Golgi/química , Membranas Intracelulares/química , Proteínas de la Membrana/química , Mitosis/fisiología , Regulación Alostérica/fisiología , Sustitución de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad , Quinasa Tipo Polo 1
10.
Nat Cell Biol ; 8(3): 238-48, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16489344

RESUMEN

The mammalian Golgi apparatus exists as stacks of cisternae that are laterally linked to form a continuous membrane ribbon, but neither the molecular requirements for, nor the purpose of, Golgi ribbon formation are known. Here, we demonstrate that ribbon formation is mediated by specific membrane-fusion events that occur during Golgi assembly, and require the Golgi proteins GM130 and GRASP65. Furthermore, these GM130 and GRASP65-dependent lateral cisternal-fusion reactions are necessary to achieve uniform distribution of enzymes in the Golgi ribbon. The membrane continuity created by ribbon formation facilitates optimal processing conditions in the biosynthetic pathway.


Asunto(s)
Aparato de Golgi/enzimología , Aparato de Golgi/fisiología , Membranas Intracelulares/fisiología , Fusión de Membrana , Proteínas de la Membrana/fisiología , Autoantígenos , Glicosilación , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Transporte de Proteínas , ARN Interferente Pequeño/genética
11.
J Biol Chem ; 286(23): 20125-9, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21515684

RESUMEN

Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Cristalografía por Rayos X , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Dominios PDZ
12.
Curr Opin Cell Biol ; 17(4): 369-75, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15975779

RESUMEN

The subcompartmentalized structure of the Golgi apparatus contributes to efficient glycosylation in the secretory pathway. Subcompartmentalization driven by maturation relies primarily on constant and accurate vesicle-mediated local recycling of Golgi residents. The precision of this vesicle transport is dependent on the interplay between the key factors that mediate vesicle budding and fusion--the coat proteins and the SNARE fusion machinery. These alone, however, may not be sufficient to ensure establishment of compartments de novo, and additional regulatory mechanisms operate to modify their activity.


Asunto(s)
Compartimento Celular , Aparato de Golgi/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Transporte Vesicular/metabolismo
13.
J Biol Chem ; 285(21): 16294-301, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20228057

RESUMEN

GRASP proteins share an N-terminal GRASP domain and mediate homotypic tethering of Golgi cisternae to form extended Golgi ribbons. The golgin GM130 is thought to bind the C-terminal side of the GRASP domain to recruit GRASP65 onto the Golgi whereas stable membrane association appears to also depend on anchoring of the N terminus by myristoylation. Here, we examine the nature of the GM130/GRASP65 interaction and test whether the dual membrane contacts of the GRASP domain have a role in tethering beyond membrane recruitment. GM130 was found to contain a C-terminal PDZ ligand that binds the putative groove of the second PDZ-like domain in GRASP65. To test tethering activity independent of targeting, we took advantage of a tethering assay carried out on the mitochondrial membrane in which the GRASP membrane attachment points were individually or simultaneously substituted with mitochondrially targeted transmembrane sequences. N-terminally anchored constructs tethered only if the C terminus was also anchored; and likewise, C-terminally anchored constructs tethered only if the N terminus was anchored. One explanation for the role of this dual anchoring is that it orients the GRASP domain to prevent cis interactions within the same membrane thereby favoring trans interactions between adjacent membranes. Indeed, singly anchored GRASP constructs, although nonfunctional in tethering, interacted with one another and also bound and inhibited dually anchored constructs. This work thus elucidates the GM130/GRASP65 interaction and supports a novel orientation-based model of membrane tether regulation in which dual membrane contact orients the tethering interaction interface to favor trans over cis interactions.


Asunto(s)
Autoantígenos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Autoantígenos/genética , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Proteínas de la Membrana/genética , Estructura Terciaria de Proteína
14.
J Biol Chem ; 285(51): 39994-40003, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20937827

RESUMEN

GRASP65 links cis-Golgi cisternae via a homotypic, N-terminal PDZ interaction, and its mitotic phosphorylation disrupts this activity. Neither the identity of the PDZ ligand involved in the GRASP65 self-interaction nor the mechanism by which phosphorylation inhibits its interaction is known. Phospho-mimetic mutation of known cyclin-dependent kinase 1/cyclin B sites, all of which are in the C-terminal "regulatory domain" of the molecule, failed to block organelle tethering. However, we identified a site phosphorylated by Polo-like kinase 1 (PLK1) in the GRASP65 N-terminal domain for which mutation to aspartic acid blocked tethering and alanine substitution prevented mitotic Golgi unlinking. Further, using interaction assays, we discovered an internal PDZ ligand adjacent to the PLK phosphorylation site that was required for tethering. These results reveal the mechanism of phosphoinhibition as direct inhibition by PLK1 of the PDZ ligand underlying the GRASP65 self-interaction.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Proteínas de la Membrana/genética , Mutación Missense , Dominios PDZ/fisiología , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
15.
J Cell Biol ; 174(1): 53-63, 2006 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-16818719

RESUMEN

Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at exit sites driven by increased levels of Golgi proteins in the ER. Analysis in a permeabilized cell assay indicated that up-regulation of COPII assembly occurred in the absence GTP hydrolysis and any cytosolic factors other than the COPII prebudding complex Sar1p-Sec23p-Sec24p. Remarkably, acting via a direct interaction with Sar1p, increased expression of the Golgi enzyme N-acetylgalactosaminyl transferase-2 induced increased COPII assembly on the ER and an overall increase in the size of the Golgi apparatus. These results suggest that direct interactions between Golgi proteins exiting the ER and COPII components regulate ER exit, providing a variable exit rate mechanism that ensures homeostasis of the Golgi apparatus.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Aparato de Golgi/metabolismo , Animales , Línea Celular , Células Cultivadas , Retículo Endoplásmico/metabolismo , Células HeLa , Homeostasis , Humanos , Modelos Biológicos , N-Acetilgalactosaminiltransferasas/metabolismo , Ratas
16.
Mol Biol Cell ; 18(2): 594-604, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17182854

RESUMEN

Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.


Asunto(s)
Aparato de Golgi/enzimología , MAP Quinasa Quinasa 1/fisiología , Mitosis , División Celular/genética , Fase G2/genética , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , Proteínas de la Membrana/metabolismo , Mitosis/genética , Fosforilación , Interferencia de ARN
17.
IEEE Trans Image Process ; 18(8): 1817-29, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19380268

RESUMEN

We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnicas Citológicas/métodos , Células HeLa , Humanos
18.
Biophys J ; 95(4): 1674-88, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18469086

RESUMEN

The Golgi apparatus is comprised of stacked cisternal membranes forming subcompartments specialized for posttranslational processing of newly synthesized secretory cargo. Recent experimental evidence indicates that the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum, but the mechanism by which the membranes self assemble into compartmentalized structures remains unknown. We developed a discrete-event computer simulation model to test whether two fundamental mechanisms-vesicle-coat-mediated selective concentration of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins during vesicle formation, and SNARE-mediated selective fusion of vesicles-suffice to generate and maintain compartments. Simulations verified that this minimal model is adequate for homeostasis of preestablished compartments, even in response to small perturbations, and for de novo formation of stable compartments. The model led to a novel prediction that Golgi size is in part dependent on target SNARE expression level. This prediction was supported by a demonstration that exogenous expression of the Golgi target SNARE syntaxin-5 alters Golgi size in living cells.


Asunto(s)
Aparato de Golgi/química , Aparato de Golgi/fisiología , Fusión de Membrana/fisiología , Modelos Biológicos , Vesículas Transportadoras/química , Vesículas Transportadoras/fisiología , Simulación por Computador , Modelos Químicos , Proteínas SNARE/química , Proteínas SNARE/fisiología
19.
Mol Biol Cell ; 15(11): 4798-806, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15331763

RESUMEN

Toxins can invade cells by using a direct endosome-to-Golgi endocytic pathway that bypasses late endosomes/prelysosomes. This is also a route used by endogenous proteins, including GPP130, which is an integral membrane protein retrieved via the bypass pathway from endosomes to its steady-state location in the cis-Golgi. An RNA interference-based test revealed that GPP130 was required for efficient exit of Shiga toxin B-fragment from endosomes en route to the Golgi apparatus. Furthermore, two proteins whose Golgi targeting depends on endosome-to-Golgi retrieval in the bypass pathway accumulated in early/recycling endosomes in the absence of GPP130. GPP130 activity seemed specific to bypass pathway trafficking because the targeting of other tested proteins, including those retrieved to the Golgi via the more conventional late endosome route, was unaltered. Thus, a distally cycling Golgi protein mediates exit from endosomes and thereby underlies Shiga toxin invasion and retrieval-based targeting of other cycling Golgi proteins.


Asunto(s)
Endosomas/metabolismo , Aparato de Golgi/metabolismo , Transporte Biológico , Endocitosis , Glicoproteínas/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Fosfoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Toxina Shiga/química , Toxina Shiga/metabolismo , Factores de Tiempo , Transfección , Proteínas de Transporte Vesicular
20.
Mol Biol Cell ; 14(12): 5011-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14565973

RESUMEN

It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Compartimento Celular/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Sulfonamidas , Animales , Brefeldino A/farmacología , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Compartimento Celular/efectos de los fármacos , Células Cultivadas , Clofibrato/farmacología , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Aparato de Golgi/efectos de los fármacos , Humanos , Hipolipemiantes/farmacología , Isoquinolinas/farmacología , Microscopía Electrónica , Microscopía Fluorescente , Inhibidores de la Síntesis de la Proteína/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA