Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(2): 329-339, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725402

RESUMEN

Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/transmisión , Gripe Humana/virología , Sustitución de Aminoácidos , Animales , Hurones , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Mutación , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Receptores Virales/metabolismo , Selección Genética
2.
Nature ; 584(7821): 457-462, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32668444

RESUMEN

Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Linfocitos T/inmunología , Betacoronavirus/química , COVID-19 , Estudios de Casos y Controles , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Reacciones Cruzadas/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/virología , SARS-CoV-2
3.
PLoS Pathog ; 18(8): e1010763, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939522

RESUMEN

Transmembrane Protein 41B (TMEM41B) and Vacuole Membrane Protein 1 (VMP1) are two ER-associated lipid scramblases that play a role in autophagosome formation and cellular lipid metabolism. TMEM41B is also a recently validated host factor required by flaviviruses and coronaviruses. However, the exact underlying mechanism of TMEM41B in promoting viral infections remains an open question. Here, we validated that both TMEM41B and VMP1 are essential host dependency factors for all four serotypes of dengue virus (DENV) and human coronavirus OC43 (HCoV-OC43), but not chikungunya virus (CHIKV). While HCoV-OC43 failed to replicate entirely in both TMEM41B- and VMP1-deficient cells, we detected diminished levels of DENV infections in these cell lines, which were accompanied by upregulation of the innate immune dsRNA sensors, RIG-I and MDA5. Nonetheless, this upregulation did not correspondingly induce the downstream effector TBK1 activation and Interferon-beta expression. Despite low levels of DENV replication, classical DENV replication organelles were undetectable in the infected TMEM41B-deficient cells, suggesting that the upregulation of the dsRNA sensors is likely a consequence of aberrant viral replication rather than a causal factor for reduced DENV infection. Intriguingly, we uncovered that the inhibitory effect of TMEM41B deficiency on DENV replication, but not HCoV-OC43, can be partially reversed using exogenous fatty acid supplements. In contrast, VMP1 deficiency cannot be rescued using the metabolite treatment. In line with the observed phenotypes, we found that both TMEM41B- and VMP1-deficient cells harbor higher levels of compromised mitochondria, especially in VMP1 deficiency which results in severe dysregulations of mitochondrial beta-oxidation. Using a metabolomic profiling approach, we revealed distinctive global dysregulations of the cellular metabolome, particularly lipidome, in TMEM41B- and VMP1-deficient cells. Our findings highlight a central role for TMEM41B and VMP1 in modulating multiple cellular pathways, including lipid mobilization, mitochondrial beta-oxidation, and global metabolic regulations, to facilitate the replication of flaviviruses and coronaviruses.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Dengue , Metabolismo Energético , Humanos , Lípidos , Proteínas de la Membrana/genética , Replicación Viral
4.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37650875

RESUMEN

Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.


Asunto(s)
Subtipo H2N2 del Virus de la Influenza A , Virus de la Influenza A , Animales , Humanos , Subtipo H2N2 del Virus de la Influenza A/genética , Hurones , Pandemias
5.
Proc Natl Acad Sci U S A ; 117(1): 619-628, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31843889

RESUMEN

Influenza B viruses have circulated in humans for over 80 y, causing a significant disease burden. Two antigenically distinct lineages ("B/Victoria/2/87-like" and "B/Yamagata/16/88-like," termed Victoria and Yamagata) emerged in the 1970s and have cocirculated since 2001. Since 2015 both lineages have shown unusually high levels of epidemic activity, the reasons for which are unclear. By analyzing over 12,000 influenza B virus genomes, we describe the processes enabling the long-term success and recent resurgence of epidemics due to influenza B virus. We show that following prolonged diversification, both lineages underwent selective sweeps across the genome and have subsequently taken alternate evolutionary trajectories to exhibit epidemic dominance, with no reassortment between lineages. Hemagglutinin deletion variants emerged concomitantly in multiple Victoria virus clades and persisted through epistatic mutations and interclade reassortment-a phenomenon previously only observed in the 1970s when Victoria and Yamagata lineages emerged. For Yamagata viruses, antigenic drift of neuraminidase was a major driver of epidemic activity, indicating that neuraminidase-based vaccines and cross-reactivity assays should be employed to monitor and develop robust protection against influenza B morbidity and mortality. Overall, we show that long-term diversification and infrequent selective sweeps, coupled with the reemergence of hemagglutinin deletion variants and antigenic drift of neuraminidase, are factors that contributed to successful circulation of diverse influenza B clades. Further divergence of hemagglutinin variants with poor cross-reactivity could potentially lead to circulation of 3 or more distinct influenza B viruses, further complicating influenza vaccine formulation and highlighting the urgent need for universal influenza vaccines.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Epidemias/prevención & control , Evolución Molecular , Virus de la Influenza B/genética , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/prevención & control , Variación Genética , Genoma Viral/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza B/inmunología , Virus de la Influenza B/patogenicidad , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/genética , Neuraminidasa/inmunología , Selección Genética/inmunología
6.
Br Med Bull ; 132(1): 81-95, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31848585

RESUMEN

BACKGROUND: Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT: Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY: Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS: The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH: Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.


Asunto(s)
Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Animales , Antivirales/uso terapéutico , Aves , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Humanos , Virus de la Influenza A/clasificación , Vacunas contra la Influenza , Gripe Aviar/terapia , Gripe Aviar/transmisión , Gripe Humana/terapia , Gripe Humana/transmisión , Factores de Riesgo , Zoonosis/epidemiología , Zoonosis/terapia , Zoonosis/transmisión
7.
Nature ; 501(7468): 560-3, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23925116

RESUMEN

Wild waterfowl form the main reservoir of influenza A viruses, from which transmission occurs directly or indirectly to various secondary hosts, including humans. Direct avian-to-human transmission has been observed for viruses of subtypes A(H5N1), A(H7N2), A(H7N3), A(H7N7), A(H9N2) and A(H10N7) upon human exposure to poultry, but a lack of sustained human-to-human transmission has prevented these viruses from causing new pandemics. Recently, avian A(H7N9) viruses were transmitted to humans, causing severe respiratory disease and deaths in China. Because transmission via respiratory droplets and aerosols (hereafter referred to as airborne transmission) is the main route for efficient transmission between humans, it is important to gain an insight into airborne transmission of the A(H7N9) virus. Here we show that although the A/Anhui/1/2013 A(H7N9) virus harbours determinants associated with human adaptation and transmissibility between mammals, its airborne transmissibility in ferrets is limited, and it is intermediate between that of typical human and avian influenza viruses. Multiple A(H7N9) virus genetic variants were transmitted. Upon ferret passage, variants with higher avian receptor binding, higher pH of fusion, and lower thermostability were selected, potentially resulting in reduced transmissibility. This A(H7N9) virus outbreak highlights the need for increased understanding of the determinants of efficient airborne transmission of avian influenza viruses between mammals.


Asunto(s)
Hurones/virología , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Microbiología del Aire , Animales , Aves/virología , Chlorocebus aethiops , Perros , Genoma Viral/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/transmisión , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Modelos Moleculares , Células Vero
8.
Emerg Infect Dis ; 24(1): 114-117, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260678

RESUMEN

To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.


Asunto(s)
Quirópteros/sangre , Quirópteros/virología , Ebolavirus , Marburgvirus , Proteínas del Envoltorio Viral/sangre , Animales , Glicoproteínas/sangre , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Estudios Seroepidemiológicos , Singapur/epidemiología
9.
Arch Virol ; 162(9): 2843-2846, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28577214

RESUMEN

Newcastle disease virus (NDV) is an important pathogen in poultry. Waterfowl and a number of other avian species serve as the host for NDV. Severity of the disease is variable and infected animals mainly develop respiratory and neurological symptoms. Outbreaks of NDV in poultry are recorded regularly in the Republic of Kazakhstan despite the widespread use of vaccines. Here we present evidence that nucleic acid found in open water bodies in Kazakhstan can be detected by means of next-generation sequencing and belongs to at least three distinct genotypes of NDV.


Asunto(s)
Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Animales , Microbiología Ambiental , Kazajstán/epidemiología , Enfermedad de Newcastle/epidemiología , Filogenia , Aves de Corral , ARN Viral/genética
10.
J Virol ; 89(4): 2442-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505070

RESUMEN

The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.


Asunto(s)
Adaptación Biológica , Subtipo H2N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/virología , Zoonosis/virología , Animales , Aves , Brotes de Enfermedades , Evolución Molecular , Variación Genética , Humanos , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Datos de Secuencia Molecular , ARN Viral/genética , Análisis de Secuencia de ADN , Zoonosis/epidemiología
11.
BMC Infect Dis ; 16(1): 612, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27793106

RESUMEN

BACKGROUND: Undifferentiated acute febrile illness (AFI) is a common presentation among adults in primary care settings in Singapore but large gaps exist in the understanding of the characteristics of these patients. We studied clinical and epidemiological characteristics of AFI patients and factors associated with delayed recovery from AFI. METHODS: We performed a secondary data analysis using data from the Early DENgue infection and outcome (EDEN) study on 2046 adult patients presenting at 5 Singapore polyclinics between December 2007 and February 2013 with a history of fever (≥38 °C) for less than 72 h. We used an accelerated failure time model to investigate factors associated with delayed recovery from AFI. RESULTS: The mean age of patients was 36.6 years, 65 % were male, 51 % were of Chinese ethnicity, and 75 % lived in public housing. Median illness duration was 5 days (interquartile range, 3-7). In multivariable analysis, the unemployed and white collar workers had longer illness duration compared with blue collar workers (time ratio (TR), 1.10; 95 % confidence interval (CI), 1.03-1.17 and TR, 1.08; 95 % CI, 1.02-1.15, respectively). Patients with more symptoms at initial consultation had slower recovery (TR, 1.03 per additional symptom; 95 % CI, 1.02-1.03). Other clinical factors were also associated with longer duration of illness, including use of analgesics (TR, 1.21; 95 % CI, 1.15-1.28); use of cough medicines (TR, 1.14; 95 % CI, 1.08-1.20); use of antibiotics (TR, 1.14; 95 % CI, 1.07-1.21); and hospitalization (TR, 1.59; 95 % CI, 1.39-1.82). Compared to patients with normal WBC count at first consultation, those with low WBC count had slower recovery (TR, 1.14; 95 % CI, 1.07-1.21), while the reverse was observed among patients with high WBC count (TR, 0.94; 95 % CI, 0.88-1.00). CONCLUSIONS: Differences in illness duration among different types of employment may reflect differences in their underlying general health status. Early identification of factors delaying recovery could help triage management in a primary care setting. In-depth characterization of fever etiology in Singapore will improve surveillance and control activities.


Asunto(s)
Fiebre de Origen Desconocido/epidemiología , Fiebre de Origen Desconocido/etiología , Adulto , Analgésicos/uso terapéutico , Antibacterianos/uso terapéutico , Dengue/tratamiento farmacológico , Dengue/epidemiología , Femenino , Fiebre/tratamiento farmacológico , Fiebre/epidemiología , Fiebre/etiología , Fiebre de Origen Desconocido/tratamiento farmacológico , Hospitalización/estadística & datos numéricos , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Atención Primaria de Salud , Singapur/epidemiología , Factores de Tiempo , Resultado del Tratamiento
12.
J Virol ; 86(7): 3975-84, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22278228

RESUMEN

The route by which highly pathogenic avian influenza (HPAI) H5N1 virus spreads systemically, including the central nervous system (CNS), is largely unknown in mammals. Especially, the olfactory route, which could be a route of entry into the CNS, has not been studied in detail. Although the multibasic cleavage site (MBCS) in the hemagglutinin (HA) of HPAI H5N1 viruses is a major determinant of systemic spread in poultry, the association between the MBCS and systemic spread in mammals is less clear. Here we determined the virus distribution of HPAI H5N1 virus in ferrets in time and space-including along the olfactory route-and the role of the MBCS in systemic replication. Intranasal inoculation with wild-type H5N1 virus revealed extensive replication in the olfactory mucosa, from which it spread to the olfactory bulb and the rest of the CNS, including the cerebrospinal fluid (CSF). Virus spread to the heart, liver, pancreas, and colon was also detected, indicating hematogenous spread. Ferrets inoculated intranasally with H5N1 virus lacking an MBCS demonstrated respiratory tract infection only. In conclusion, HPAI H5N1 virus can spread systemically via two different routes, olfactory and hematogenous, in ferrets. This systemic spread was dependent on the presence of the MBCS in HA.


Asunto(s)
Modelos Animales de Enfermedad , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Vías Olfatorias/virología , Secuencias de Aminoácidos , Animales , Sangre/virología , Línea Celular , Femenino , Hurones/sangre , Hurones/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/sangre , Gripe Humana/patología , Vías Olfatorias/patología , Procesamiento Proteico-Postraduccional , Virulencia , Replicación Viral
13.
PLoS Pathog ; 7(9): e1002276, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21980293

RESUMEN

Only two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that influenza virus becomes resistant to these antiviral drugs and spreads in the human population. The 2009 pandemic A/H1N1 influenza virus is naturally resistant to adamantanes. Recently a novel neuraminidase I223R mutation was identified in an A/H1N1 virus showing cross-resistance to the neuraminidase inhibitors oseltamivir, zanamivir and peramivir. However, the ability of this virus to cause disease and spread in the human population is unknown. Therefore, this clinical isolate (NL/2631-R223) was compared with a well-characterized reference virus (NL/602). In vitro experiments showed that NL/2631-I223R replicated as well as NL/602 in MDCK cells. In a ferret pathogenesis model, body weight loss was similar in animals inoculated with NL/2631-R223 or NL/602. In addition, pulmonary lesions were similar at day 4 post inoculation. However, at day 7 post inoculation, NL/2631-R223 caused milder pulmonary lesions and degree of alveolitis than NL/602. This indicated that the mutant virus was less pathogenic. Both NL/2631-R223 and a recombinant virus with a single I223R change (recNL/602-I223R), transmitted among ferrets by aerosols, despite observed attenuation of recNL/602-I223R in vitro. In conclusion, the I223R mutated virus isolate has comparable replicative ability and transmissibility, but lower pathogenicity than the reference virus based on these in vivo studies. This implies that the 2009 pandemic influenza A/H1N1 virus subtype with an isoleucine to arginine change at position 223 in the neuraminidase has the potential to spread in the human population. It is important to be vigilant for this mutation in influenza surveillance and to continue efforts to increase the arsenal of antiviral drugs to combat influenza.


Asunto(s)
Farmacorresistencia Viral Múltiple , Gripe Humana , Mutación , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae , Pandemias , Animales , Línea Celular , Modelos Animales de Enfermedad , Perros , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/enzimología , Gripe Humana/epidemiología , Gripe Humana/genética , Gripe Humana/transmisión , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/transmisión
14.
One Health ; 16: 100529, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363265

RESUMEN

Orthonairovirus is a genus of viruses in the family Nairoviridae, order Bunyavirales, with a segmented circular RNA genome. They typically infect birds and mammals and are primarily transmitted by ectoparasites such as ticks. Four of nine Orthonairovirus genogroups can infect humans, with Crimean-Congo hemorrhagic fever virus infections displaying case fatality rates up to 40%. Here, we discover and describe a novel Orthonairovirus as Cencurut virus (CENV). CENV was detected in 34 of 37 Asian house shrews (Suncus murinus) sampled in Singapore and in a nymphal Amblyomma helvolum tick collected from an infected shrew. Pairwise comparison of CENV S, M, and L segments had 95.0 to 100% nucleotide and 97.5 to 100% amino acid homology within CENV genomes, suggesting a diverse viral population. Phylogenetic analysis of the individual gene segments showed that CENV is related to Erve, Lamgora, Lamusara, and Thiafora viruses, with only 49.0 to 58.2% nucleotide and 41.7 to 61.1% amino acid homology, which has previously been detected in other shrew species from France, Gabon, and Senegal respectively. The high detection frequency suggests that CENV is endemic among S. murinus populations in Singapore. The discovery of CENV, from a virus family with known zoonotic potential, underlines the importance of surveillance of synanthropic small mammals that are widely distributed across Southeast Asia.

15.
Microbiol Spectr ; 11(3): e0348322, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199653

RESUMEN

Bats are the reservoir for numerous human pathogens, including coronaviruses. Despite many coronaviruses having descended from bat ancestors, little is known about virus-host interactions and broader evolutionary history involving bats. Studies have largely focused on the zoonotic potential of coronaviruses with few infection experiments conducted in bat cells. To determine genetic changes derived from replication in bat cells and possibly identify potential novel evolutionary pathways for zoonotic virus emergence, we serially passaged six human 229E isolates in a newly established Rhinolophus lepidus (horseshoe bat) kidney cell line. Here, we observed extensive deletions within the spike and open reading frame 4 (ORF4) genes of five 229E viruses after passaging in bat cells. As a result, spike protein expression and infectivity of human cells was lost in 5 of 6 viruses, but the capability to infect bat cells was maintained. Only viruses that expressed the spike protein could be neutralized by 229E spike-specific antibodies in human cells, whereas there was no neutralizing effect on viruses that did not express the spike protein inoculated on bat cells. However, one isolate acquired an early stop codon, abrogating spike expression but maintaining infection in bat cells. After passaging this isolate in human cells, spike expression was restored due to acquisition of nucleotide insertions among virus subpopulations. Spike-independent infection of human coronavirus 229E may provide an alternative mechanism for viral maintenance in bats that does not rely on the compatibility of viral surface proteins and known cellular entry receptors. IMPORTANCE Many viruses, including coronaviruses, originated from bats. Yet, we know little about how these viruses switch between hosts and enter human populations. Coronaviruses have succeeded in establishing in humans at least five times, including endemic coronaviruses and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In an approach to identify requirements for host switches, we established a bat cell line and adapted human coronavirus 229E viruses by serial passage. The resulting viruses lost their spike protein but maintained the ability to infect bat cells, but not human cells. Maintenance of 229E viruses in bat cells appears to be independent of a canonical spike receptor match, which in turn might facilitate cross-species transmission in bats.


Asunto(s)
COVID-19 , Quirópteros , Coronavirus Humano 229E , Animales , Humanos , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo
16.
Emerg Microbes Infect ; 12(2): 2256416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37672505

RESUMEN

The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , SARS-CoV-2 , Receptores de Hidrocarburo de Aril/genética , Línea Celular
17.
Microbiol Spectr ; 10(3): e0044922, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35638834

RESUMEN

Bats are considered the natural reservoir of numerous emerging viruses such as severe acute respiratory syndrome coronaviruses (SARS-CoVs). There is a need for immortalized bat cell lines to culture and investigate the pathogenicity, replication kinetics, and evolution of emerging coronaviruses. We illustrate the susceptibility and permissiveness of a spontaneously immortalized kidney cell line (Rhileki) from Blyth's horseshoe bat (R. lepidus) to SARS-CoV-2 virus, including clinical isolates, suggesting a possible virus-host relationship. We were able to observe limited SARS-CoV-2 replication in Rhileki cells compared with simian VeroE6 cells. Slower viral replication in Rhileki cells was indicated by higher ct values (RT-PCR) at later time points of the viral culture and smaller foci (foci forming assay) compared with those of VeroE6 cells. With this study we demonstrate that SARS-CoV-2 replication is not restricted to R. sinicus and could include more Rhinolophus species. The establishment of a continuous Rhinolophus lepidus kidney cell line allows further characterization of SARS-CoV-2 replication in Rhinolophus bat cells, as well as isolation attempts of other bat-borne viruses. IMPORTANCE The current COVID-19 pandemic demonstrates the significance of bats as reservoirs for severe viral diseases. However, as bats are difficult to establish as animal models, bat cell lines can be an important proxy for the investigation of bat-virus interactions and the isolation of bat-borne viruses. This study demonstrates the susceptibility and permissiveness of a continuous kidney bat cell line to SARS-CoV-2. This does not implicate the bat species Rhinolophus lepidus, where these cells originate from, as a potential reservoir, but emphasizes the usefulness of this cell line for further characterization of SARS-CoV-2. This can lead to a better understanding of emerging viruses that could cause significant disease in humans and domestic animals.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , Riñón , Pandemias , Filogenia , SARS-CoV-2
20.
Antiviral Res ; 193: 105138, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246735

RESUMEN

The global spread of SARS-CoV-2 has made millions ill with COVID-19 and even more from the economic fallout of this pandemic. Our quest to test new therapeutics and vaccines require small animal models that replicate disease phenotypes seen in COVID-19 cases. Rodent models of SARS-CoV-2 infection thus far have shown mild to moderate pulmonary disease; mortality, if any, has been associated with prominent signs of central nervous system (CNS) infection and dysfunction. Here we describe the isolation of SARS-CoV-2 variants with propensity for either pulmonary or CNS infection. Using a wild-type SARS-CoV-2 isolated from a COVID-19 patient, we first found that infection was lethal in transgenic mice expressing the human angiotensin I-converting enzyme 2 (hACE2). Fortuitously, full genome sequencing of SARS-CoV-2 from the brain and lung of these animals showed genetic differences. Likewise, SARS-CoV-2 isolates from brains and lungs of these also showed differences in plaque morphology. Inoculation of these brain and lung SARS-CoV-2 isolates into new batch of hACE2 mice intra-nasally resulted in lethal CNS and pulmonary infection, respectively. Collectively, our study suggests that genetic variants of SARS-CoV-2 could be used to replicate specific features of COVID-19 for the testing of potential vaccines or therapeutics.


Asunto(s)
COVID-19/patología , Modelos Animales de Enfermedad , Pulmón/patología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Animales , Encéfalo/patología , Encéfalo/virología , COVID-19/metabolismo , COVID-19/mortalidad , COVID-19/virología , Femenino , Humanos , Pulmón/virología , Ratones , Ratones Transgénicos , Peptidil-Dipeptidasa A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA