Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Combust Flame ; 2622024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38487500

RESUMEN

The influence of air humidity on flame propagation in mixtures of hydrofluorocarbons (HFCs) with air was studied through numerical simulations and comparison with measurements from the literature. Water vapor added to the air in mixtures of fluorine rich hydrofluorocarbons (F/H≥1) can be considered as a fuel additive that increases the production of radicals (H, O, OH) and increases the overall reaction rate. The hydrofluorocarbon flame is typically a two-stage reaction proceeding with a relatively fast reaction in the first stage transitioning to a very slow reaction in the second stage which leads to the combustion equilibrium products. The transition to the second stage is determined by the consumption of hydrogen-containing species and formation of HF. Despite a relatively small effect of water on the adiabatic combustion temperature, its influence is significant on the reaction rate and on the temperature increase in the first stage of the combustion leading to the increase in burning velocity. The main reaction for converting H2O to hydrogen-containing radicals and promoting combustion is H2O+F=HF+OH, as demonstrated by reaction path analyses for the fluorine rich hydrofluorocarbons R-1234yf, R-1234ze(E), and R-134a (F/H = 2). The calculated burning velocity dependence on the equivalence ratio ϕ agrees reasonably well with available experimental measurements for R1234yf and R-1234ze(E) with and without the addition of water vapor. In agreement with experimental data, with water vapor, the maximum of burning velocity over ϕ is shifted to the lean mixtures (near ϕ = 0.8).

2.
Int J Refrig ; 1042019.
Artículo en Inglés | MEDLINE | ID: mdl-33304017

RESUMEN

We investigated refrigerant blends as possible low GWP (global warming potential) alternatives for R-134a in an air-conditioning application. We carried out an extensive screening of the binary, ternary, and four-component blends possible among a list of 13 pure refrigerants comprising four hydrofluoroolefins (HFOs), eight hydrofluorocarbons (HFCs), and carbon dioxide. The screening was based on a simplified cycle model, but with the inclusion of pressure drops in the evaporator and condenser. The metrics for the evaluation were nonflammability, low GWP, high COP (coefficient of performance), and a volumetric capacity similar to the R-134a baseline system. While no mixture was ideal in all regards, we identified 16 binary and ternary blends that were nonflammable (based on a new estimation method) and with COP and capacity similar to the R-134a baseline; the tradeoff, however, was a reduction in GWP of, at most, 54% compared to R-134a. An additional seven blends that were estimated to be "marginally flammable" (ASHRAE Standard 34 classification of A2L) were identified with GWP reductions of as much as 99%. These 23 "best" blends were then simulated in a more detailed cycle model.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30983915

RESUMEN

Compared to current refrigerants, next-generation refrigerants are more environmentally benign but more flammable. The laminar burning velocity is being used by industry as a metric to screen refrigerants for fire risk, and it is also used for kinetic model development and validation. This study reports measurements of difluoromethane/air flame burning velocities for equivalence ratios from 0.9 to 1.4 in a spherical, constant volume device. Experimental burning velocities produced with the aid of an optically thin radiation model are about 17 % greater than those obtained with an adiabatic model. Characterization of flame stretch based on the product of Markstein and Karlovitz numbers indicates that while many experimental data are nearly stretch-free, those for slower burning velocities, smaller flame radii, and leaner conditions may not be. Limiting the data to regions estimated to be stretch-free requires extrapolation away from the experimental conditions to extract burning velocities near ambient conditions, e.g., at (298 K, 101 kPa). Lower uncertainty, desirable for kinetic model validation, is obtained by interpolating between experimental conditions, e.g., at (400 K, 304 kPa). Since thermal radiation and flame stretch were found to affect the inferred burning velocities of difluoromethane/air constant volume spherical flames, they should also be considered during data reduction of other mildly flammable refrigerants.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31579396

RESUMEN

The effects of phosphorus-containing compounds (PCCs) on the extinguishment and structure of methane-air coflow diffusion flames, in the cup-burner configuration, is studied computationally. Dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), or phosphoric acid is added to either the air or fuel flow. Time-dependent axisymmetric computation is performed with full gas-phase chemistry and transport to reveal the flame structure and inhibition process. A detailed chemical-kinetics model (77 species and 886 reactions) is constructed by combining the methane-oxygen combustion and phosphorus inhibition chemistry. A simple model for radiation from CH4, CO, CO2, H2O, and soot based on the optically thin-media assumption is incorporated into the energy equation. The inhibitor effectiveness is calculated as the minimum extinguishing concentrations (MECs) of CO2 (added to the oxidizer) as a function of the PCC loading (added to the oxidizer or fuel stream). The calculated MEC of CO2 without an inhibitor is in good agreement with the measured value. For moderate DMMP loading to the air (<1 %), the measured value becomes significantly smaller, presumably due to particle formation in the experiment. An inhibitor in the oxidizer flow is an order of magnitude more effective compared to that in the fuel flow in gas-phase inhibition of co-flow diffusion flames. The three PCCs studied behave similarly with regard to flame inhibition, lowering radical concentrations and the heat-release rate at the flame-stabilizing peak reactivity spot (i.e., reaction kernel) in the base, promoting flame blow-off. The three compounds behave differently, however, with regard to the trailing flame. While all three raise the maximum temperature in the trailing flame, DMMP and TMP, which contain three methyl groups, result in higher maximum flame temperature and combustion enhancement there, with a unique two-zone flame structure, whereas phosphoric acid does not.

5.
Combust Sci Technol ; 189(2): 290-311, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133390

RESUMEN

A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).

6.
Combust Sci Technol ; 189(12)2017.
Artículo en Inglés | MEDLINE | ID: mdl-38524097

RESUMEN

A kinetic model of inhibition by the potassium-containing compound potassium bicarbonate is suggested. The model is based on the previous work concerning kinetic studies of suppression of secondary flashes, inhibition by alkali metals and the emission of sulfates and chlorides during biomass combustion. The kinetic model includes reactions with the following gas-phase potassium-containing species: K, KO, KO2, KO3, KH, KOH, K2O, K2O2, (KOH)2, K2CO3, KHCO3 and KCO3. Flame equilibrium calculations demonstrate that the main potassiumcontaining species in the combustion products are K and KOH. The main inhibition reactions, which comprise the radical termination inhibition cycle are KOH+H=K+H2O and K+OH+M=KOH+M with the overall termination effect: H+OH=H2O. Numerically predicted burning velocities for stoichiometric methane/air flames with added KHCO3 demonstrate reasonable agreement with available experimental data. A strong saturation effect is observed for potassium compounds: approximately 0.1% volume fraction of KHCO3 is required to decrease burning velocity by a factor of 2, however an additional 0.6% volume fraction is required to reach a burning velocity of 5 cm/s. Analysis of the calculation results indicates that addition of the potassium compound quickly reduces the radical super-equilibrium down to equilibrium levels, so that further addition of the potassium compound has little effect on the flame radicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA