Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260395

RESUMEN

Novel MRI techniques allow a noninvasive quantification of tissue sodium and reveal the skin as a prominent compartment of sodium storage in health and disease. Since multiple sclerosis (MS) immunopathology is initiated in the periphery and increased sodium concentrations induce proinflammatory immune cells, the skin represents a promising compartment linking high sodium concentrations and MS immunopathology. We used a 7-T sodium MRI (23Na-MRI) and inductively coupled plasma mass spectrometry to investigate the skin sodium content in two mouse models of MS. We additionally performed 3-T 23Na-MRI of calf skin and muscles in 29 male relapsing-remitting MS (RRMS) patients and 29 matched healthy controls. Demographic and clinical information was collected from interviews, and disease activity was assessed by expanded disability status scale scoring. 23Na-MRI and chemical analysis demonstrated a significantly increased sodium content in the skin during experimental autoimmune encephalomyelitis independent of active immunization. In male patients with RRMS, 23Na-MRI demonstrated a higher sodium signal in the area of the skin compared to age- and biological sex-matched healthy controls with higher sodium, predicting future disease activity in cranial MRI. In both studies, the sodium enrichment was specific to the skin, as we found no alterations of sodium signals in the muscle or other tissues. Our data add to the recently identified importance of the skin as a storage compartment of sodium and may further represent an important organ for future investigations on salt as a proinflammatory agent driving autoimmune neuroinflammation such as that in MS.


Asunto(s)
Esclerosis Múltiple/metabolismo , Piel/metabolismo , Sodio/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Procesamiento de Señales Asistido por Computador , Piel/diagnóstico por imagen
2.
Pflugers Arch ; 475(11): 1329-1342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672108

RESUMEN

Peripheral neurons with renal afferents exhibit a predominantly tonic firing pattern of higher frequency that is reduced to low frequencies (phasic firing pattern) in renal inflammation. We wanted to test the hypothesis that the reduction in firing activity during inflammation is due to high-activity tonic neurons switching from higher to low frequencies depending on altered sodium currents. We identified and cultivated afferent sensory neurons with renal projections from the dorsal root ganglia (Th11-L2). Cultivated neurons were incubated with the chemokine CXCL1 (1,5 nmol/ml) for 12 h. We characterized neurons as "tonic," i.e., sustained action potential (AP) firing, or "phasic," i.e., < 5 APs upon stimulation in the current clamp. Their membrane currents were investigated in a voltage clamp. Data analyzed: renal vs. non-renal and tonic vs. phasic neurons. Renal afferent neurons exposed to CXCL1 showed a decrease in tonic firing pattern (CXCL1: 35,6% vs. control: 57%, P < 0.05). Na+ and K+ currents were not different between control renal and non-renal DRG neurons. Phasic neurons exhibited higher Na+ and K+ currents than tonic resulting in shorter APs (3.7 ± 0.3 vs. 6.1 ± 0.6 ms, P < 0.01). In neurons incubated with CXCL1, Na+ and K+ peak current density increased in phasic (Na+: - 969 ± 47 vs. - 758 ± 47 nA/pF, P < 0.01; K+: 707 ± 22 vs. 558 ± 31 nA/pF, P < 0.01), but were unchanged in tonic neurons. Phasic neurons exposed to CXCL1 showed a broader range of Na+ currents ([- 365- - 1429 nA] vs. [- 412- - 4273 nA]; P < 0.05) similar to tonic neurons. After CXCL1 exposure, significant changes in phasic neurons were observed in sodium activation/inactivation as well as a wider distribution of Na+ currents characteristic of tonic neurons. These findings indicate a subgroup of tonic neurons besides mere tonic or phasic neurons exists able to exhibit a phasic activity pattern under pathological conditions.

3.
PLoS Biol ; 18(6): e3000722, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569301

RESUMEN

Inflammation and infection can trigger local tissue Na+ accumulation. This Na+-rich environment boosts proinflammatory activation of monocyte/macrophage-like cells (MΦs) and their antimicrobial activity. Enhanced Na+-driven MΦ function requires the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5), which augments nitric oxide (NO) production and contributes to increased autophagy. However, the mechanism of Na+ sensing in MΦs remained unclear. High extracellular Na+ levels (high salt [HS]) trigger a substantial Na+ influx and Ca2+ loss. Here, we show that the Na+/Ca2+ exchanger 1 (NCX1, also known as solute carrier family 8 member A1 [SLC8A1]) plays a critical role in HS-triggered Na+ influx, concomitant Ca2+ efflux, and subsequent augmented NFAT5 accumulation. Moreover, interfering with NCX1 activity impairs HS-boosted inflammatory signaling, infection-triggered autolysosome formation, and subsequent antibacterial activity. Taken together, this demonstrates that NCX1 is able to sense Na+ and is required for amplifying inflammatory and antimicrobial MΦ responses upon HS exposure. Manipulating NCX1 offers a new strategy to regulate MΦ function.


Asunto(s)
Macrófagos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Empalme Alternativo/genética , Animales , Calcio/metabolismo , Espacio Extracelular/metabolismo , Silenciador del Gen/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Iones , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Cloruro de Sodio/farmacología
4.
J Transl Med ; 20(1): 580, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494667

RESUMEN

BACKGROUND: Muscle fatigue and pain are key symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Although the pathophysiology is not yet fully understood, there is ample evidence for hypoperfusion which may result in electrolyte imbalance and sodium overload in muscles. Therefore, the aim of this study was to assess levels of sodium content in muscles of patients with ME/CFS and to compare these to healthy controls. METHODS: Six female patients with ME/CFS and six age, BMI and sex matched controls underwent 23Na-MRI of the left lower leg using a clinical 3T MR scanner before and after 3 min of plantar flexion exercise. Sodium reference phantoms with solutions of 10, 20, 30 and 40 mmol/L NaCl were used for quantification. Muscle sodium content over 40 min was measured using a dedicated plugin in the open-source DICOM viewer Horos. Handgrip strength was measured and correlated with sodium content. RESULTS: Baseline tissue sodium content was higher in all 5 lower leg muscle compartments in ME/CFS compared to controls. Within the anterior extensor muscle compartment, the highest difference in baseline muscle sodium content between ME/CFS and controls was found (mean ± SD; 12.20 ± 1.66 mM in ME/CFS versus 9.38 ± 0.71 mM in controls, p = 0.0034). Directly after exercise, tissue sodium content increased in gastrocnemius and triceps surae muscles with + 30% in ME/CFS (p = 0.0005) and + 24% in controls (p = 0.0007) in the medial gastrocnemius muscle but not in the extensor muscles which were not exercised. Compared to baseline, the increase of sodium content in medial gastrocnemius muscle was stronger in ME/CFS than in controls with + 30% versus + 17% to baseline at 12 min (p = 0.0326) and + 29% versus + 16% to baseline at 15 min (p = 0.0265). Patients had reduced average handgrip strength which was associated with increased average muscle tissue sodium content (p = 0.0319, R2 = 0.3832). CONCLUSION: Muscle sodium content before and after exercise was higher in ME/CFS than in healthy controls. Furthermore, our findings indicate an inverse correlation between muscle sodium content and handgrip strength. These findings provide evidence that sodium overload may play a role in the pathophysiology of ME/CFS and may allow for potential therapeutic targeting.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Femenino , Fuerza de la Mano , Sodio , Músculo Esquelético , Imagen por Resonancia Magnética
5.
J Magn Reson Imaging ; 55(1): 140-151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259373

RESUMEN

BACKGROUND: Sodium enhancement has been demonstrated in multiple sclerosis (MS) lesions. PURPOSE: To investigate sodium MRI with and without an inversion recovery pulse in acute MS lesions in an MS relapse and during recovery. STUDY TYPE: Prospective. SUBJECTS: Twenty-nine relapsing-remitting MS patients with an acute relapse were included. FIELD STRENGTH/SEQUENCE: A 3D density-adapted radial sodium sequence at 3 T using a dual-tuned (23 Na/1 H) head coil. ASSESSMENT: Full-brain images of the tissue sodium concentration (TSC1, n = 29) and a sodium inversion recovery sequence (SIR1, n = 20) at the beginning of the anti-inflammatory therapy and on medium-term follow-up visits (days 27-99, n = 12 [TSC], n = 5 [SIR]) were measured. Regions of interest (RoIs) with contrast enhancement (T1 CE+) and without change in T1-weighted imaging (FL + T1n) were normalized (nTSC and nSIR). To gain insight on the origin of the TSC enhancement at time point 1, it is investigated whether the nTSC enhancement of the lesions is accompanied by a change of the respective nSIR. Potential prognostic value of nSIR1 is examined referring to the nTSC progression. STATISTICAL TESTS: nTSC and nSIR were compared regarding the type of lesion and the time point using a one-way ANOVA. Pearson's correlation coefficient was calculated for nTSC over nSIR and for nTSC1-nTSC2 over nSIR1. A P-value <0.05 was considered statistically significant. RESULTS: At the first measurement, all lesion types showed increased nTSC, while nSIR was decreased in the FL + T1 n and the T1 CE+ lesions in comparison to the normal-appearing white matter. For acute lesions, the difference between nTSC at baseline and nTSC at time point 2 showed a significant correlation with the baseline nSIR. DATA CONCLUSION: At time point 1, nTSC is increased, while nSIR is unchanged or decreased in the lesions. The mean sodium IR signal at baseline correlates with recovery or progression of an acute lesion. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 4.


Asunto(s)
Esclerosis Múltiple , Sodio , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Estudios Prospectivos
6.
Kidney Blood Press Res ; 47(3): 185-193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34915510

RESUMEN

BACKGROUND: The relationship between Na+ balance and cardiovascular disease (CVD) in hemodialysis (HD) patients is not yet fully understood. We hypothesized that HD patients co-diagnosed with CVD show increased tissue Na+ accumulation compared to HD patients without CVD. METHODS: In our observational study, 52 HD patients were divided into a group with (23 subjects) or without (29 subjects) a positive history of cardiovascular events. We used 23Na-magnetic resonance imaging (23Na-MRI) at 3.0 Tesla to quantify Na+ content in skin and muscle of both groups directly before and after HD. Additionally, total body fluid distribution was determined by bioimpedance spectroscopy (BIS) and laboratory parameters were assessed. RESULTS: Compared to HD patients without CVD, 23Na-MRI detected an increased Na+ content in skin (21.7 ± 7.3 vs. 30.2 ± 9.8 arbitrary units (a.u.), p < 0.01) and muscle tissue (21.5 ± 3.6 vs. 24.7 ± 6.0 a.u., p < 0.05) in patients with previous CVD events. Simultaneously measured fluid amount by BIS, includingexcess extracellular water (1.8 ± 1.7 vs. 2.2 ± 1.7 L, p = 0.44), was not significantly different between both groups. Tissue Na+ accumulation in HD-CVD patients was paralleled by a higher plasma concentration of the inflammation marker interleukin-6 (5.1, IQR 5.8 vs. 8.5, IQR 7.9 pg/mL, p < 0.05). CONCLUSION: In our cohort, HD patients with CVD showed higher tissue Na+ content than HD patients without CVD, while no difference in body water distribution could be detected between both groups. Our findings provide evidence that the history of a cardiovascular event is associated with disturbances in tissue Na+ content in HD patients.


Asunto(s)
Enfermedades Cardiovasculares , Fallo Renal Crónico , Humanos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Imagen por Resonancia Magnética/métodos , Diálisis Renal , Piel , Sodio
7.
Pflugers Arch ; 473(10): 1617-1629, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34232378

RESUMEN

Previous data suggest that renal afferent nerve activity is increased in hypertension exerting sympathoexcitatory effects. Hence, we wanted to test the hypothesis that in renovascular hypertension, the activity of dorsal root ganglion (DRG) neurons with afferent projections from the kidneys is augmented depending on the degree of intrarenal inflammation. For comparison, a nonhypertensive model of mesangioproliferative nephritis was investigated. Renovascular hypertension (2-kidney, 1-clip [2K1C]) was induced by unilateral clipping of the left renal artery and mesangioproliferative glomerulonephritis (anti-Thy1.1) by IV injection of a 1.75-mg/kg BW OX-7 antibody. Neuronal labeling (dicarbocyanine dye [DiI]) in all rats allowed identification of renal afferent dorsal root ganglion (DRG) neurons. A current clamp was used to characterize neurons as tonic (sustained action potential [AP] firing) or phasic (1-4 AP) upon stimulation by current injection. All kidneys were investigated using standard morphological techniques. DRG neurons exhibited less often tonic response if in vivo axonal input from clipped kidneys was received (30.4% vs. 61.2% control, p < 0.05). However, if the nerves to the left clipped kidneys were cut 7 days prior to investigation, the number of tonic renal neurons completely recovered to well above control levels. Interestingly, electrophysiological properties of neurons that had in vivo axons from the right non-clipped kidneys were not distinguishable from controls. Renal DRG neurons from nephritic rats also showed less often tonic activity upon current injection (43.4% vs. 64.8% control, p < 0.05). Putative sympathoexcitatory and impaired sympathoinhibitory renal afferent nerve fibers probably contribute to increased sympathetic activity in 2K1C hypertension.


Asunto(s)
Vías Aferentes , Glomerulonefritis/inducido químicamente , Hipertensión Renovascular/fisiopatología , Riñón/inervación , Animales , Ganglios Espinales , Glomerulonefritis/clasificación , Glomerulonefritis/patología , Masculino , Ratas , Ratas Sprague-Dawley
8.
Pflugers Arch ; 473(4): 633-646, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33786667

RESUMEN

We recently showed that a substance P (SP)-dependent sympatho-inhibitory mechanism via afferent renal nerves is impaired in mesangioproliferative nephritis. Therefore, we tested the hypothesis that SP released from renal afferents inhibits the action potential (AP) production in their dorsal root ganglion (DRG) neurons. Cultured DRG neurons (Th11-L2) were investigated in current clamp mode to assess AP generation during both TRPV1 stimulation by protons (pH 6) and current injections with and without exposure to SP (0.5 µmol) or CGRP (0.5 µmol). Neurons were classified as tonic (sustained AP generation) or phasic (≤ 4 APs) upon current injection; voltage clamp experiments were performed for the investigation of TRPV1-mediated inward currents due to proton stimulation. Superfusion of renal neurons with protons and SP increased the number of action potentials in tonic neurons (9.6 ± 5 APs/10 s vs. 16.9 ± 6.1 APs/10 s, P < 0.05, mean ± SD, n = 7), while current injections with SP decreased it (15.2 ± 6 APs/600 ms vs. 10.2 ± 8 APs/600 ms, P < 0.05, mean ± SD, n = 29). Addition of SP significantly reduced acid-induced TRPV1-mediated currents in renal tonic neurons (- 518 ± 743 pA due to pH 6 superfusion vs. - 82 ± 50 pA due to pH 6 with SP superfusion). In conclusion, SP increased action potential production via a TRPV1-dependent mechanism in acid-sensitive renal neurons. On the other hand, current injection in the presence of SP led to decreased action potential production. Thus, the peptide SP modulates signaling pathways in renal neurons in an unexpected manner leading to both stimulation and inhibition of renal neuronal activity in different (e.g., acidic) environmental contexts.


Asunto(s)
Potenciales de Acción , Riñón/inervación , Neuronas Aferentes/fisiología , Sustancia P/farmacología , Animales , Células Cultivadas , Ganglios Espinales/citología , Riñón/citología , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia P/metabolismo , Canales Catiónicos TRPV/metabolismo
9.
Magn Reson Med ; 85(1): 239-253, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869364

RESUMEN

PURPOSE: To validate the feasibility of quantitative combined potassium (39 K) and sodium (23 Na) MRI in human calf muscle tissue, as well as to evaluate the reproducibility of the apparent tissue potassium concentration (aTPC) and apparent tissue sodium concentration (aTSC) determination in healthy muscle tissue. METHODS: Quantitative 23 Na and 39 K MRI acquisition protocols were implemented on a 7 T MR system. A double-resonant 23 Na/39 K birdcage RF coil was used. Measurements of human lower leg were performed in a total acquisition time of TANa = 10:54 min/TAK = 8:06 min and using a nominal spatial resolution of 2.5 × 2.5 × 15 mm3 /7.5 × 7.5 × 30 mm3 for 23 Na/39 K MRI. Two aTSC and aTPC examinations in muscle tissue were performed during the same day on 10 healthy subjects. RESULTS: The proposed acquisition and postprocessing workflow for 23 Na and 39 K MRI data sets provided reproducible aTSC and aTPC measurements. In human calf muscle tissue, the coefficient of variation between scan and re-scan was 5.7% for both aTSC and aTPC determination. Overall, mean values of aTSC = (17 ± 1) mM and aTPC = (85 ± 5) mM were measured. Moreover, for 39 K in calf muscle tissue, T2∗ components of T2f∗ = (1.2 ± 0.2) ms and T2s∗ = (7.9 ± 0.9) ms, as well as a residual quadrupolar interaction of ωq¯ = (143 ± 17) Hz, were determined. The fraction of the fast component was f = (58 ± 4)%. CONCLUSION: Using the presented measurement and postprocessing approach, a reproducible aTSC and aTPC determination using 23 Na and 39 K MRI at 7 T in human skeletal muscle tissue is feasible in clinically acceptable acquisition durations.


Asunto(s)
Imagen por Resonancia Magnética , Potasio , Sodio , Humanos , Músculo Esquelético/diagnóstico por imagen , Reproducibilidad de los Resultados
10.
Magn Reson Med ; 86(1): 346-362, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33634505

RESUMEN

PURPOSE: To enable whole-brain quantitative CEST MRI at ultra-high magnetic field strengths (B0 ≥ 7T) within short acquisition times. METHODS: Multiple interleaved mode saturation (MIMOSA) was combined with fast online-customized (FOCUS) parallel transmission (pTx) excitation pulses and B1+ correction to achieve homogenous whole-brain coverage. Examinations of 13 volunteers were performed on a 7T MRI system with 3 different types of pulse sequences: (1) saturation in circular polarized (CP) mode and CP mode readout, (2) MIMOSA and CP readout, and (3) MIMOSA and FOCUS readout. For comparison, the inverse magnetic transfer ratio metric for relayed nuclear Overhauser effect and amide proton transfer were calculated. To investigate the number of required acquisitions for a good B1+ correction, 4 volunteers were measured with 6 different B1 amplitudes. Finally, time point repeatability was investigated for 6 volunteers. RESULTS: MIMOSA FOCUS sequence using B1+ correction, with both single and multiple points, reduced inhomogeneity of the CEST contrasts around the occipital lobe and cerebellum. Results indicate that the most stable inter-subject coefficient of variation was achieved using the MIMOSA FOCUS sequence. Time point repeatability of MIMOSA FOCUS with single-point B1+ correction showed a maximum coefficient of variation below 8% for 3 measurements in a single volunteer. CONCLUSION: A combination of MIMOSA FOCUS with a single-point B1+ correction can be used to achieve quantitative CEST measurements at ultra-high magnetic field strengths. Compared to previous B1+ correction methods, acquisition time can be reduced as additional scans required for B1+ correction can be omitted.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Medios de Contraste , Humanos , Protones
11.
Am J Physiol Renal Physiol ; 319(5): F822-F832, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017188

RESUMEN

Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/farmacología , Riñón/efectos de los fármacos , Nefritis/tratamiento farmacológico , Neuronas Aferentes/efectos de los fármacos , Vías Aferentes/efectos de los fármacos , Animales , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Sustancia P/metabolismo
12.
Magn Reson Med ; 82(2): 693-705, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002432

RESUMEN

PURPOSE: To mitigate B1+ inhomogeneity in quantitative CEST MRI at ultra-high magnetic field strengths (B0 ≥ 7 Tesla) using a parallel transmit system. METHODS: Multiple interleaved mode saturation employs interleaving of 2 complementary phase sets during the saturation pulse train. Phase differences of 45° (first mode) and 90° (second mode) between 2 adjacent transmitter coil channels are used. The influence of the new saturation scheme on the CEST contrast was analyzed using Bloch-McConnell simulations. The presented method was verified in phantom and in vivo measurements of the healthy human brain. The relayed nuclear Overhauser effect was evaluated, and the inverse magnetic transfer ratio metric was calculated. Results were compared to a published B1+ correction method. All measurements were conducted on a whole-body 7 Tesla MRI system using an 8 transmitter and 32 receiver channel head coil. RESULTS: Simulations showed that the inverse magnetic transfer ratio metric contrast of relayed nuclear Overhauser effect shows a smaller dependency on the relative amplitudes of the 2 different modes than the contrasts of Cr and amide proton transfer. Measurements of an egg white phantom showed markedly improved homogeneity compared to the uncorrected inverse magnetic transfer ratio metric (relayed nuclear Overhauser effect) images and slightly improved results compared to B1+ corrected images. In vivo multiple interleaved mode saturation images showed similar contrast compared to B1+ corrected images. CONCLUSION: Multiple interleaved mode saturation can be used as a simple method to mitigate B1+ inhomogeneity effects in CEST MRI at ultra-high magnetic field strengths. Compared to previous B1+ correction methods, acquisition time can be reduced because an additional scan, usually required for B1+ correction, can be omitted.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Amidas , Encéfalo/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Masculino , Fantasmas de Imagen , Protones , Adulto Joven
13.
Kidney Int ; 93(5): 1191-1197, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29455909

RESUMEN

Long-term elevated blood sugar levels result in tissue matrix compositional changes in patients with diabetes mellitus type 2 (T2DM). We hypothesized that hemodialysis patients with T2DM might accumulate more tissue sodium than control hemodialysis patients. To test this, 23Na magnetic resonance imaging (23Na MRI) was used to estimate sodium in skin and muscle tissue in hemodialysis patients with or without T2DM. Muscle fat content was estimated by 1H MRI and tissue sodium content by 23Na MRI pre- and post-hemodialysis in ten hemodialysis patients with T2DM and in 30 matched control hemodialysis patients. We also assessed body fluid distribution with the Body Composition Monitor. 1H MRI indicated a tendency to higher muscle fat content in hemodialysis patients with T2DM compared to non-diabetic hemodialysis patients. 23Na MRI indicated increased sodium content in muscle and skin tissue of hemodialysis patients with T2DM compared to control hemodialysis patients. Multi-frequency bioimpedance was used to estimate extracellular water (ECW), and excess ECW in T2DM hemodialysis patients correlated with HbA1c levels. Sodium mobilization during hemodialysis lowered muscle sodium content post-dialysis to a greater degree in T2DM hemodialysis patients than in control hemodialysis patients. Thus, our findings provide evidence that increased sodium accumulation occurs in hemodialysis patients with T2DM and that impaired serum glucose metabolism is associated with disturbances in tissue sodium and water content.


Asunto(s)
Composición Corporal , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Nefropatías Diabéticas/terapia , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Radiofármacos/metabolismo , Diálisis Renal , Piel/diagnóstico por imagen , Isótopos de Sodio/metabolismo , Adiposidad , Anciano , Glucemia/metabolismo , Compartimentos de Líquidos Corporales/diagnóstico por imagen , Compartimentos de Líquidos Corporales/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/diagnóstico por imagen , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Impedancia Eléctrica , Femenino , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Valor Predictivo de las Pruebas , Piel/metabolismo , Piel/fisiopatología , Distribución Tisular
15.
J Am Soc Nephrol ; 28(6): 1867-1876, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28154199

RESUMEN

The pathogenesis of left ventricular hypertrophy in patients with CKD is incompletely understood. Sodium intake, which is usually assessed by measuring urinary sodium excretion, has been inconsistently linked with left ventricular hypertrophy. However, tissues such as skin and muscle may store sodium. Using 23sodium-magnetic resonance imaging, a technique recently developed for the assessment of tissue sodium content in humans, we determined skin sodium content at the level of the calf in 99 patients with mild to moderate CKD (42 women; median [range] age, 65 [23-78] years). We also assessed total body overhydration (bioimpedance spectroscopy), 24-hour BP, and left ventricular mass (cardiac magnetic resonance imaging). Skin sodium content, but not total body overhydration, correlated with systolic BP (r=0.33, P=0.002). Moreover, skin sodium content correlated more strongly than total body overhydration did with left ventricular mass (r=0.56, P<0.001 versus r=0.35, P<0.001; P<0.01 between the two correlations). Linear regression analysis demonstrated that skin sodium content is a strong explanatory variable for left ventricular mass, unaffected by BP and total body overhydration. In conclusion, we found skin sodium content to be closely linked to left ventricular mass in patients with CKD. Interventions that reduce skin sodium content might improve cardiovascular outcomes in these patients.


Asunto(s)
Hipertrofia Ventricular Izquierda/complicaciones , Insuficiencia Renal Crónica/complicaciones , Piel/química , Sodio/análisis , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/metabolismo , Piel/metabolismo , Sodio/metabolismo , Adulto Joven
16.
Rheumatology (Oxford) ; 56(4): 556-560, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013199

RESUMEN

Objective: Skin fibrosis is the predominant feature of SSc and arises from excessive extracellular matrix deposition. Glycosaminoglycans are macromolecules of the extracellular matrix, which facilitate Na + accumulation in the skin. We used 23 Na-MRI to quantify Na + in skin. We hypothesized that skin Na + might accumulate in SSc and might be a biomarker for skin fibrosis. Methods: In this observational case-control study, skin Na + was determined by 23 Na-MRI using a Na + volume coil in 12 patients with diffuse cutaneous SSc and in 21 control subjects. We assessed skin fibrosis by the modified Rodnan skin score prior to 23 Na-MRI and on follow-up 12 months later. Results: 23 Na-MRI demonstrated increased Na + in the fibrotic skin of SSc patients compared with skin from controls [mean ( s . d .): 27.2 (5.6) vs 21.4 (5.3) mmol/l, P < 0.01]. Na + content was higher in fibrotic than in non-fibrotic SSc skin [26.2 (4.8) vs 19.2 (3.4) mmol/l, P < 0.01]. Furthermore, skin Na + amount was correlated with changes in follow-up modified Rodnan skin score (R 2 = 0.68). Conclusions: 23 Na-MRI detected increased Na + in the fibrotic SSc skin; high Na + content was associated with progressive skin disease. Our findings provide the first evidence that 23 Na-MRI might be a promising tool to assess skin Na + and thereby predict progression of skin fibrosis in SSc.


Asunto(s)
Esclerodermia Sistémica/metabolismo , Piel/patología , Sodio/metabolismo , Estudios de Casos y Controles , Femenino , Fibrosis/metabolismo , Antebrazo , Humanos , Extremidad Inferior , Imagen por Resonancia Magnética/métodos , Masculino , Piel/metabolismo , Isótopos de Sodio
17.
Am J Physiol Renal Physiol ; 310(5): F364-71, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26697980

RESUMEN

Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.


Asunto(s)
Quimiocina CXCL1/farmacología , Ganglios Espinales/efectos de los fármacos , Riñón/inervación , Neuronas/efectos de los fármacos , Potenciales de Acción , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Animales , Células Cultivadas , Ganglios Espinales/fisiología , Cinética , Masculino , Neuronas/fisiología , Ratas Sprague-Dawley
18.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R806-18, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26911463

RESUMEN

Renal denervation (DNX) is a treatment for resistant arterial hypertension. Efferent sympathetic nerves regrow, but reinnervation by renal afferent nerves has only recently been shown in the renal pelvis of rats after unilateral DNX. We examined intrarenal perivascular afferent and sympathetic efferent nerves after unilateral surgical DNX. Tyrosine hydroxylase (TH), CGRP, and smooth muscle actin were identified in kidney sections from 12 Sprague-Dawley rats, to distinguish afferents, efferents, and vasculature. DNX kidneys and nondenervated kidneys were examined 1, 4, and 12 wk after DNX. Tissue levels of CGRP and norepinephrine (NE) were measured with ELISA and mass spectrometry, respectively. DNX decreased TH and CGRP labeling by 90% and 95%, respectively (P < 0.05) within 1 wk. After 12 wk TH and CGRP labeling returned to baseline with a shift toward afferent innervation (P < 0.05). Nondenervated kidneys showed a doubling of both labels within 12 wk (P < 0.05). CGRP content decreased by 72% [3.2 ± 0.3 vs. 0.9 ± 0.2 ng/gkidney; P < 0.05] and NA by 78% [1.1 ± 0.1 vs. 0.2 ± 0.1 pmol/mgkidney; P < 0.05] 1 wk after DNX. After 12 wk, CGRP, but not NE, content in DNX kidneys was fully recovered, with no changes in the nondenervated kidneys. The use of phenol in the DNX procedure did not influence this result. We found morphological reinnervation and transmitter recovery of afferents within 12 wk after DNX. Despite morphological evidence of sympathetic regrowth, NE content did not fully recover. These results suggest a long-term net surplus of afferent influence on the DNX kidney may be contributing to the blood pressure lowering effect of DNX.


Asunto(s)
Riñón/inervación , Regeneración Nerviosa/fisiología , Simpatectomía , Actinas/genética , Actinas/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Regulación de la Expresión Génica , Masculino , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
19.
Kidney Int ; 87(2): 434-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25100048

RESUMEN

We have previously reported that sodium is stored in skin and muscle. The amounts stored in hemodialysis (HD) patients are unknown. We determined whether (23)Na magnetic resonance imaging (sodium-MRI) allows assessment of tissue sodium and its removal in 24 HD patients and 27 age-matched healthy controls. We also studied 20 HD patients before and shortly after HD with a batch dialysis system with direct measurement of sodium in dialysate and ultrafiltrate. Age was associated with higher tissue sodium content in controls. This increase was paralleled by an age-dependent decrease of circulating levels of vascular endothelial growth factor-C (VEGF-C). Older (>60 years) HD patients showed increased sodium and water in skin and muscle and lower VEGF-C levels compared with age-matched controls. After HD, patients with low VEGF-C levels had significantly higher skin sodium content compared with patients with high VEGF-C levels (low VEGF-C: 2.3 ng/ml and skin sodium: 24.3 mmol/l; high VEGF-C: 4.1 ng/ml and skin sodium: 18.2 mmol/l). Thus, sodium-MRI quantitatively detects sodium stored in skin and muscle in humans and allows studying sodium storage reduction in ESRD patients. Age and VEGF-C-related local tissue-specific clearance mechanisms may determine the efficacy of tissue sodium removal with HD. Prospective trials on the relationship between tissue sodium content and hard end points could provide new insights into sodium homeostasis, and clarify whether increased sodium storage is a cardiovascular risk factor.


Asunto(s)
Diálisis Renal , Sodio/aislamiento & purificación , Sodio/metabolismo , Adulto , Factores de Edad , Anciano , Estudios de Casos y Controles , Femenino , Soluciones para Hemodiálisis/análisis , Humanos , Fallo Renal Crónico/sangre , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/terapia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Distribución Tisular , Factor C de Crecimiento Endotelial Vascular/sangre
20.
NMR Biomed ; 28(1): 54-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25328128

RESUMEN

Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Piel/metabolismo , Sodio/metabolismo , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Protones , Ondas de Radio , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA