Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 33(3): 211-223, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37819629

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive disabling X-linked recessive disorder that causes gradual and irreversible loss of muscle, resulting in early death. The corticosteroids prednisone/prednisolone and deflazacort are used to treat DMD as the standard of care; however, only deflazacort is FDA approved for DMD. The novel atypical corticosteroid vamorolone is being investigated for treatment of DMD. We compared the pharmaceutical properties as well as the efficacy and safety of the three corticosteroids across multiple doses in the B10-mdx DMD mouse model. Pharmacokinetic studies in the mouse and evaluation of p-glycoprotein (P-gP) efflux in a cellular system demonstrated that vamorolone is not a strong P-gp substrate resulting in measurable central nervous system (CNS) exposure in the mouse. In contrast, deflazacort and prednisolone are strong P-gp substrates. All three corticosteroids showed efficacy, but also side effects at efficacious doses. After dosing mdx mice for two weeks, all three corticosteroids induced changes in gene expression in the liver and the muscle, but prednisolone and vamorolone induced more changes in the brain than did deflazacort. Both prednisolone and vamorolone induced depression-like behavior. All three corticosteroids reduced endogenous corticosterone levels, increased glucose levels, and reduced osteocalcin levels. Using micro-computed tomography, femur bone density was decreased, reaching significance with prednisolone. The results of these studies indicate that efficacious doses of vamorolone, are associated with similar side effects as seen with other corticosteroids. Further, because vamorolone is not a strong P-gp substrate, vamorolone distributes into the CNS increasing the potential CNS side-effects.


Asunto(s)
Distrofia Muscular de Duchenne , Prednisolona , Pregnadienodioles , Pregnenodionas , Animales , Ratones , Prednisolona/uso terapéutico , Microtomografía por Rayos X , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Corticosterona/uso terapéutico , Preparaciones Farmacéuticas
2.
Mol Ther ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033321

RESUMEN

Cyclin dependent kinase-like 5 (CDKL5) Deficiency Disorder (CDD) is a rare neurodevelopmental disorder caused by a mutation in the X-linked CDKL5 gene. CDKL5 is a serine/threonine kinase that is critical for axon outgrowth, dendritic morphogenesis, as well as synapse formation, maturation, and maintenance. This disorder is characterized by early-onset epilepsy, hypotonia, and failure to reach cognitive and motor developmental milestones. Because the disease is monogenic, delivery of the CDKL5 gene to the brain of patients should provide clinical benefit. To this end, we designed a gene therapy vector, adeno-associated virus (AAV)9.Syn.hCDKL5, in which human CDKL5 gene expression is driven by the synapsin promoter. In biodistribution studies conducted in mice, intracerebroventricular (ICV) injection resulted in broader, more optimal biodistribution than did intracisterna magna (ICM) delivery. AAV9.Syn.hCDKL5 treatment increased phosphorylation of EB2, a bona fide CDKL5 substrate, demonstrating biological activity in vivo. Our data provides proof-of-concept that ICV delivery of AAV9.Syn.hCDKL5 to neonatal male Cdkl5 knockout mice reduces pathology and reduces aberrant behavior. Functional improvements were seen at doses of 3e11 to 5e11 vector genomes (vg)/g brain, which resulted in transfection of ≥50% of the neurons. Functional improvements were not seen at lower doses suggesting a requirement for broad distribution for efficacy.

3.
Antimicrob Agents Chemother ; 58(4): 2387-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24514098

RESUMEN

Clostridium difficile is the causative agent of C. difficile-associated diarrhea (CDAD), with increased risk in elderly populations. Kibdelomycin, a novel natural-product inhibitor of type II topoisomerase enzymes, was evaluated for activity against C. difficile and gastrointestinal anaerobic organisms. Toxigenic C. difficile isolates (n=168) from U.S. hospitals and anaerobic Gram-positive and Gram-negative organisms (n=598) from Chicago-area hospitals were tested. Kibdelomycin showed potent activity against toxigenic C. difficile (MIC90=0.25 µg/ml) and most Gram-positive aerobic organisms but had little activity against Bacteroides species (MIC50>32 µg/ml; n=270). Potent anti-C. difficile activity was also observed in the hamster model of C. difficile colitis. Dosing at 1.6 mg/kg (twice-daily oral dose) resulted in protection from a lethal infection and a 2-log reduction in C. difficile cecal counts. A 6.25-mg/kg twice-daily oral dose completely eliminated detectable C. difficile counts in cecal contents. A single 6.25-mg/kg oral dose showed that cecal contents were exposed to the drug at >2 µM (eightfold higher than the MIC), with no significant plasma exposure. These findings support further exploration of kibdelomycin for development of an anti-C. difficile agent.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Animales , Antibacterianos/farmacocinética , Cricetinae , Masculino , Ratones , Pruebas de Sensibilidad Microbiana
4.
Mol Cancer Ther ; 4(8): 1214-21, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16093437

RESUMEN

Insulin-like growth factor-I receptor (IGF-IR) plays an important role in tumor cell growth and survival. On ligand stimulation, IGF-IR, a receptor tyrosine kinase, phosphorylates tyrosine residues on two major substrates, IRS-1 and Shc, which subsequently signal through the Ras/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT pathways. Here, we describe the characterization of a fully human anti-IGF-IR monoclonal antibody 19D12 that inhibits IGF binding and autophosphorylation of both IGF-IR/IGF-IR homodimers and IGF-IR/insulin receptor heterodimers. 19D12 does not recognize insulin receptor homodimers. In addition to inhibiting IGF-IR autophosphorylation, 19D12 also inhibits IRS-1 phosphorylation and activation of the major downstream signaling molecules AKT and extracellular signal-regulated kinase 1/2. Furthermore, the antibody down-regulates the total IGF-IR protein level and can exhibit antibody-dependent cellular cytotoxicity activity against a non-small cell adenocarcinoma cell line in vitro in the presence of isolated human natural killer cells. 19D12 binds tightly to the receptor, with an affinity of 3.8 pmol/L as measured by KinExA. In cell culture, 19D12 inhibits proliferation and soft agar growth of various tumor cell lines. In vivo, 19D12 inhibits the tumor growth of a very aggressive human ovarian tumor xenograft model A2780. These data support the development of this anti-IGF-IR monoclonal antibody as a promising anticancer agent.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Receptor IGF Tipo 1/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Dimerización , Regulación hacia Abajo , Humanos , Proteínas Sustrato del Receptor de Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Receptor IGF Tipo 1/inmunología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
ACS Med Chem Lett ; 7(3): 324-9, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26985323

RESUMEN

A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23-ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.

6.
Mol Cancer Ther ; 9(2): 410-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20124453

RESUMEN

The insulin-like growth factor-I receptor (IGF-IR) and its ligands (IGF-I and IGF-II) have been implicated in the growth, survival, and metastasis of a broad range of malignancies including pediatric tumors. Blocking the IGF-IR action is a potential cancer treatment. A fully human neutralizing monoclonal antibody, SCH 717454 (19D12, robatumumab), specific to IGF-IR, has shown potent antitumor effects in ovarian cancer in vitro and in vivo. In this study, SCH 717454 was evaluated in several pediatric solid tumors including neuroblastoma, osteosarcoma, and rhabdomyosarcoma. SCH 717454 is shown here to downregulate IGF-IR as well as inhibit IGF-IR and insulin receptor substrate-1 phosphorylation in pediatric tumor cells. IGF-IR and insulin receptor substrate-1 phosphorylation in the tumor cells. In vivo, SCH 717454 exhibits activity as a single agent and significantly inhibited growth of neuroblastoma, osteosarcoma, and rhabdomyosarcoma tumor xenografts. Combination of SCH 717454 with cisplatin or cyclophosphamide enhanced both the degree and the duration of the in vivo antitumor activity compared with single-agent treatments. Furthermore, SCH 717454 treatment markedly reduced Ki-67 expression and blood vessel formation in tumor xenografts, showing that the in vivo activity is derived from its inhibition of tumor cell proliferation and angiogenesis activity.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Receptor IGF Tipo 1/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/inmunología , Antígeno Ki-67/biosíntesis , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neovascularización Patológica , Fosforilación
7.
Anal Biochem ; 331(1): 138-46, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15246006

RESUMEN

MDM2 is an important negative regulator of the tumor suppressor protein p53 which regulates the expression of many genes including MDM2. The delicate balance of this autoregulatory loop is crucial for the maintenance of the genome and control of the cell cycle and apoptosis. MDM2 hyperactivity, due to amplification/overexpression or mutational inactivation of the ARF locus, inhibits the function of wild-type p53 and can lead to the development of a wide variety of cancers. Thus, the development of anti-MDM2 therapies may restore normal p53 function in tumor cells and induce growth suppression and apoptosis. We report here a novel high-throughput fluorescence polarization binding assay and its application in rank ordering small-molecule inhibitors that block the binding of MDM2 to a p53-derived fluorescent peptide.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Polarización de Fluorescencia , Proteínas Nucleares/química , Péptidos/química , Proteínas Proto-Oncogénicas/química , Proteína p53 Supresora de Tumor/química , Ciclo Celular/fisiología , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA