RESUMEN
The transcription factor Foxo3 plays a crucial role in myeloid cell function but its role in lymphoid cells remains poorly defined. Here, we have shown that Foxo3 expression was increased after T cell receptor engagement and played a specific role in the polarization of CD4+ T cells toward pathogenic T helper 1 (Th1) cells producing interferon-γ (IFN-γ) and granulocyte monocyte colony stimulating factor (GM-CSF). Consequently, Foxo3-deficient mice exhibited reduced susceptibility to experimental autoimmune encephalomyelitis. At the molecular level, we identified Eomes as a direct target gene for Foxo3 in CD4+ T cells and we have shown that lentiviral-based overexpression of Eomes in Foxo3-deficient CD4+ T cells restored both IFN-γ and GM-CSF production. Thus, the Foxo3-Eomes pathway is central to achieve the complete specialized gene program required for pathogenic Th1 cell differentiation and development of neuroinflammation.
Asunto(s)
Diferenciación Celular/fisiología , Proteína Forkhead Box O3/metabolismo , Interleucina-1/metabolismo , Proteínas de Dominio T Box/metabolismo , Células TH1/metabolismo , Células TH1/patología , Factores de Transcripción/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Diferenciación Celular/inmunología , Línea Celular , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Proteína Forkhead Box O3/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células HEK293 , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-1/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas de Dominio T Box/inmunología , Células TH1/inmunologíaRESUMEN
BACKGROUND: Cancer stem cells (CSCs) are at the origin of tumour initiation and progression in gastric adenocarcinoma (GC). However, markers of metastasis-initiating cells remain unidentified in GC. In this study, we characterized CD44 variants expressed in GC and evaluated the tumorigenic and metastatic properties of CD44v3+ cells and their clinical significance in GC patients. METHODS: Using GC cell lines and patient-derived xenografts, we evaluated CD44+ and CD44v3+ GC cells molecular signature and their tumorigenic, chemoresistance, invasive and metastatic properties, and expression in patients-derived tissues. RESULTS: CD44v3+ cells, which represented a subpopulation of CD44+ cells, were detected in advanced preneoplastic lesions and presented CSCs chemoresistance and tumorigenic properties in vitro and in vivo. Molecular and functional analyses revealed two subpopulations of gastric CSCs: CD44v3+ CSCs with an epithelial-mesenchymal transition (EMT)-like signature, and CD44+/v3- CSCs with an epithelial-like signature; both were tumorigenic but CD44v3+ cells showed higher invasive and metastatic properties in vivo. CD44v3+ cells detected in the primary tumours of GC patients were associated with a worse prognosis. CONCLUSION: CD44v3 is a marker of a subpopulation of CSCs with metastatic properties in GC. The identification of metastasis-initiating cells in GC represents a major advance for further development of anti-metastatic therapeutic strategies.
Asunto(s)
Carcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Células Madre Neoplásicas/metabolismo , Carcinoma/patología , Receptores de Hialuranos , Transición Epitelial-MesenquimalRESUMEN
The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.
Asunto(s)
Evolución Molecular , Flores/genética , Flores/fisiología , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Aceites de Plantas/metabolismo , Aclimatación/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genómica , Helianthus/clasificación , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Aceite de Girasol , Transcriptoma/genéticaRESUMEN
OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismoRESUMEN
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Asunto(s)
Toxinas Bacterianas/farmacología , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Interferón Tipo I/genética , Ratones , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/genéticaRESUMEN
Dissemination and survival of ascomycetes is through asexual spores. The brlA gene encodes a C2H2-type zinc-finger transcription factor, which is essential for asexual development. Penicillium expansum causes blue mold disease and is the main source of patulin, a mycotoxin that contaminates apple-based food. A P. expansum PeΔbrlA deficient strain was generated by homologous recombination. In vivo, suppression of brlA completely blocked the development of conidiophores that takes place after the formation of coremia/synnemata, a required step for the perforation of the apple epicarp. Metabolome analysis displayed that patulin production was enhanced by brlA suppression, explaining a higher in vivo aggressiveness compared to the wild type (WT) strain. No patulin was detected in the synnemata, suggesting that patulin biosynthesis stopped when the fungus exited the apple. In vitro transcriptome analysis of PeΔbrlA unveiled an up-regulated biosynthetic gene cluster (PEXP_073960-PEXP_074060) that shares high similarity with the chaetoglobosin gene cluster of Chaetomium globosum. Metabolome analysis of PeΔbrlA confirmed these observations by unveiling a greater diversity of chaetoglobosin derivatives. We observed that chaetoglobosins A and C were found only in the synnemata, located outside of the apple, whereas other chaetoglobosins were detected in apple flesh, suggesting a spatial-temporal organization of the chaetoglobosin biosynthesis pathway.
Asunto(s)
Genes Fúngicos/genética , Patulina/biosíntesis , Patulina/genética , Penicillium/genética , Vías Biosintéticas/genética , Frutas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Alcaloides Indólicos/metabolismo , Malus/microbiología , Metaboloma/genética , Familia de Multigenes/genética , Patulina/metabolismo , Penicillium/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genéticaRESUMEN
Fumonisin B1 (FB1), a congener of fumonisins produced by Fusarium species, is the most abundant and most toxicologically active fumonisin. FB1 causes severe mycotoxicosis in animals, including nephrotoxicity, hepatotoxicity, and disruption of the intestinal barrier. However, mechanisms associated with FB1 toxicity are still unclear. Preliminary studies have highlighted the role of liver X receptors (LXRs) during FB1 exposure. LXRs belong to the nuclear receptor family and control the expression of genes involved in cholesterol and lipid homeostasis. In this context, the toxicity of FB1 was compared in female wild-type (LXR+/+) and LXRα,ß double knockout (LXR-/-) mice in the absence or presence of FB1 (10 mg/kg body weight/day) for 28 days. Exposure to FB1 supplemented in the mice's drinking water resulted in more pronounced hepatotoxicity in LXR-/- mice compared to LXR+/+ mice, as indicated by hepatic transaminase levels (ALT, AST) and hepatic inflammatory and fibrotic lesions. Next, the effect of FB1 exposure on the liver transcriptome was investigated. FB1 exposure led to a specific transcriptional response in LXR-/- mice that included altered cholesterol and bile acid homeostasis. ELISA showed that these effects were associated with an elevated FB1 concentration in the plasma of LXR-/- mice, suggesting that LXRs participate in intestinal absorption and/or clearance of the toxin. In summary, this study demonstrates an important role of LXRs in protecting the liver against FB1-induced toxicity, suggesting an alternative mechanism not related to the inhibition of sphingolipid synthesis for mycotoxin toxicity.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fumonisinas/toxicidad , Receptores X del Hígado/metabolismo , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Femenino , Fumonisinas/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/fisiología , Receptores X del Hígado/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingolípidos/metabolismoRESUMEN
The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.
Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Receptor X de Pregnano/genética , Activación Transcripcional , TranscriptomaRESUMEN
BACKGROUND: Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges. A very large variability in the response can be observed across individuals, depending on numerous conditioning factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is increasing progressively towards the production of animals with a high level of production under a wide range of climatic conditions and management systems, together with a lower environmental impact and a high level of animal welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in 120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. RESULTS: Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to LPS were observed, with a decrease of total count, maximal at t=+4 h, and the mirror changes in the respective proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t=+1 h. An integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing complementary studies focused on the LPS-stimulated inflammatory response. CONCLUSIONS: The present study demonstrates the specific biomarkers indicative of an inflammation in swine. Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making them good candidate markers for evaluating the efficacy of anti-inflammatory drugs.
Asunto(s)
Redes Reguladoras de Genes , Lipopolisacáridos/farmacología , Transcriptoma , Animales , Recuento de Células Sanguíneas , Femenino , Perfilación de la Expresión Génica , Hidrocortisona/sangre , Inmunidad/genética , Cinética , Masculino , Porcinos , Transcriptoma/efectos de los fármacosRESUMEN
BACKGROUND: Maturity of intestinal functions is critical for neonatal health and survival, but comprehensive description of mechanisms underlying intestinal maturation that occur during late gestation still remain poorly characterized. The aim of this study was to investigate biological processes specifically involved in intestinal maturation by comparing fetal jejunal transcriptomes of two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting neonatal vitality and maturity, at two key time points during late gestation (gestational days 90 and 110). MS and LW sows inseminated with mixed semen (from breed LW and MS) gave birth to both purebred and crossbred fetuses. We hypothesized that part of the differences in neonatal maturity between the two breeds results from distinct developmental profiles of the fetal intestine during late gestation. Reciprocal crossed fetuses were used to analyze the effect of parental genome. Transcriptomic data and 23 phenotypic variables known to be associated with maturity trait were integrated using multivariate analysis with expectation of identifying relevant genes-phenotypic variable relationships involved in intestinal maturation. RESULTS: A moderate maternal genotype effect, but no paternal genotype effect, was observed on offspring intestinal maturation. Four hundred and four differentially expressed probes, corresponding to 274 differentially expressed genes (DEGs), more specifically involved in the maturation process were further studied. In day 110-MS fetuses, Ingenuity® functional enrichment analysis revealed that 46% of DEGs were involved in glucose and lipid metabolism, cell proliferation, vasculogenesis and hormone synthesis compared to day 90-MS fetuses. Expression of genes involved in immune pathways including phagocytosis, inflammation and defense processes was changed in day 110-LW compared to day 90-LW fetuses (corresponding to 13% of DEGs). The transcriptional regulator PPARGC1A was predicted to be an important regulator of differentially expressed genes in MS. Fetal blood fructose level, intestinal lactase activity and villous height were the best predicted phenotypic variables with probes mostly involved in lipid metabolism, carbohydrate metabolism and cellular movement biological pathways. CONCLUSIONS: Collectively, our findings indicate that the neonatal maturity of pig intestine may rely on functional development of glucose and lipid metabolisms, immune phagocyte differentiation and inflammatory pathways. This process may partially be governed by PPARGC1A.
Asunto(s)
Desarrollo Fetal/genética , Perfilación de la Expresión Génica , Glucosa/metabolismo , Intestinos/embriología , Intestinos/inmunología , Metabolismo de los Lípidos/genética , Animales , Inmunidad/genética , Mucosa Intestinal/metabolismo , Fenotipo , PorcinosRESUMEN
Patulin is the main mycotoxin contaminating apples. During the brewing of alcoholic beverages, this mycotoxin is degraded to ascladiol, which is also the last precursor of patulin. The present study aims (1) to characterize the last step of the patulin biosynthetic pathway and (2) to describe the toxicity of ascladiol. A patE deletion mutant was generated in Penicillium expansum. In contrast to the wild strain, this mutant does not produce patulin but accumulates high levels of E-ascladiol with few traces of Z-ascladiol. This confirms that patE encodes the patulin synthase involved in the conversion of E-ascladiol to patulin. After purification, cytotoxicities of patulin and E- and Z-ascladiol were investigated on human cell lines from liver, kidney, intestine, and immune system. Patulin was cytotoxic for these four cell lines in a dose-dependent manner. By contrast, both E- and Z-ascladiol were devoid of cytotoxicity. Microarray analyses on human intestinal cells treated with patulin and E-ascladiol showed that the latter, unlike patulin, did not alter the whole human transcription. These results demonstrate that E- and Z-ascladiol are not toxic and therefore patulin detoxification strategies leading to the accumulation of ascladiol are good approaches to limit the patulin risk.
Asunto(s)
Furanos/toxicidad , Patulina/biosíntesis , Patulina/toxicidad , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Furanos/metabolismo , Eliminación de Gen , Genes Fúngicos , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Isomerismo , Especificidad de Órganos , Penicillium/genética , Penicillium/metabolismoRESUMEN
OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD.
Asunto(s)
Envejecimiento , Ácidos Grasos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , Adipocitos , Envejecimiento/fisiología , Animales , Sistema Enzimático del Citocromo P-450/genética , Familia 4 del Citocromo P450/genética , Modelos Animales de Enfermedad , Ayuno , Fenofibrato/farmacología , Factores de Crecimiento de Fibroblastos/biosíntesis , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Homeostasis/genética , Hipoglucemia/genética , Hipolipemiantes/farmacología , Hipotermia/genética , Metabolismo de los Lípidos/genética , Lipólisis/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sobrepeso/genética , PPAR alfa/metabolismo , ARN Mensajero/metabolismo , Triglicéridos/metabolismoRESUMEN
Natural food contaminants such as mycotoxins are an important problem for human health. Deoxynivalenol (DON) is one of the most common mycotoxins detected in cereals and grains. Its toxicological effects mainly concern the immune system and the gastrointestinal tract. This toxin is a potent ribotoxic stressor leading to MAP kinase activation and inflammatory response. DON frequently co-occurs with its glucosylated form, the masked mycotoxin deoxynivalenol-3-ß-D-glucoside (D3G). The toxicity of this later compound remains unknown in mammals. This study aimed to assess the ability of D3G to elicit a ribotoxic stress and to induce intestinal toxicity. The toxicity of D3G and DON (0-10 µM) was studied in vitro, on the human intestinal Caco-2 cell line, and ex vivo, on porcine jejunal explants. First, an in silico analysis revealed that D3G, contrary to DON, was unable to bind to the A-site of the ribosome peptidyl transferase center, the main targets for DON toxicity. Accordingly, D3G did not activate JNK and P38 MAPKs in treated Caco-2 cells and did not alter viability and barrier function on cells, as measured by the trans-epithelial electrical resistance. Treatment of intestinal explants for 4 h with 10 µM DON induced morphological lesions and up-regulated the expression of pro-inflammatory cytokines as measured by qPCR and pan-genomic microarray analysis. By contrast, expression profile of D3G-treated explants was similar to that of controls, and these explants did not show histomorphology alteration. In conclusion, our data demonstrated that glucosylation of DON suppresses its ability to bind to the ribosome and decreases its intestinal toxicity.
Asunto(s)
Contaminación de Alimentos/análisis , Glucósidos/toxicidad , Yeyuno/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Células CACO-2 , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Citocinas/genética , Humanos , Yeyuno/metabolismo , Yeyuno/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Peptidil Transferasas/metabolismo , Unión Proteica , Ribosomas/efectos de los fármacos , Ribosomas/enzimología , Porcinos , Transcriptoma/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: HPA axis plays a major role in physiological homeostasis. It is also involved in stress and adaptive response to the environment. In farm animals in general and specifically in pigs, breeding strategies have highly favored production traits such as lean growth rate, feed efficiency and prolificacy at the cost of robustness. On the hypothesis that the HPA axis could contribute to the trade-off between robustness and production traits, we have designed this experiment to explore individual variation in the biological response to the main stress hormone, cortisol, in pigs. We used ACTH injections to trigger production of cortisol in 120 juvenile Large White (LW) pigs from 28 litters and the kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. RESULTS: Cortisol level reached its peak 1 h after ACTH injection. White blood cell composition was modified with a decrease of lymphocytes and monocytes and an increase of granulocytes (F D R<0.05). Basal level of cortisol was correlated with birth and weaning weights. Microarray analysis identified 65 unique genes of which expression responded to the injection of ACTH (adjusted P<0.05). These genes were classified into 4 clusters with distinctive kinetics in response to ACTH injection. The first cluster identified genes strongly correlated to cortisol and previously reported as being regulated by glucocorticoids. In particular, DDIT4, DUSP1, FKBP5, IL7R, NFKBIA, PER1, RGS2 and RHOB were shown to be connected to each other by the glucocorticoid receptor NR3C1. Most of the differentially expressed genes that encode transcription factors have not been described yet as being important in transcription networks involved in stress response. Their co-expression may mean co-regulation and they could thus provide new patterns of biomarkers of the individual sensitivity to cortisol. CONCLUSIONS: We identified 65 genes as biological markers of HPA axis activation at the gene expression level. These genes might be candidates for a better understanding of the molecular mechanisms of the stress response.
Asunto(s)
Hormona Adrenocorticotrópica/farmacología , Porcinos , Transcriptoma/efectos de los fármacos , Animales , Femenino , Hidrocortisona/sangre , Cinética , Masculino , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genéticaRESUMEN
BACKGROUND: Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. RESULTS: A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. CONCLUSIONS: This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transducción de Señal , Sus scrofa/genética , Animales , Cruzamiento , Femenino , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Masculino , Músculo Esquelético/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Sus scrofa/clasificación , Sus scrofa/metabolismo , PorcinosRESUMEN
BACKGROUND: In pigs, the perinatal period is the most critical time for survival. Piglet maturation, which occurs at the end of gestation, leads to a state of full development after birth. Therefore, maturity is an important determinant of early survival. Skeletal muscle plays a key role in adaptation to extra-uterine life, e.g. glycogen storage and thermoregulation. In this study, we performed microarray analysis to identify the genes and biological processes involved in piglet muscle maturity. Progeny from two breeds with extreme muscle maturity phenotypes were analyzed at two time points during gestation (gestational days 90 and 110). The Large White (LW) breed is a selected breed with an increased rate of mortality at birth, whereas the Meishan (MS) breed produces piglets with extremely low mortality at birth. The impact of the parental genome was analyzed with reciprocal crossed fetuses. RESULTS: Microarray analysis identified 12,326 differentially expressed probes for gestational age and genotype. Such a high number reflects an important transcriptomic change that occurs between 90 and 110 days of gestation. 2,000 probes, corresponding to 1,120 unique annotated genes, involved more particularly in the maturation process were further studied. Functional enrichment and graph inference studies underlined genes involved in muscular development around 90 days of gestation, and genes involved in metabolic functions, such as gluconeogenesis, around 110 days of gestation. Moreover, a difference in the expression of key genes, e.g. PCK2, LDHA or PGK1, was detected between MS and LW just before birth. Reciprocal crossing analysis resulted in the identification of 472 genes with an expression preferentially regulated by one parental genome. Most of these genes (366) were regulated by the paternal genome. Among these paternally regulated genes, some known imprinted genes, such as MAGEL2 or IGF2, were identified and could have a key role in the maturation process. CONCLUSION: These results reveal the biological mechanisms that regulate muscle maturity in piglets. Maturity is also under the conflicting regulation of the parental genomes. Crucial genes, which could explain the biological differences in maturity observed between LW and MS breeds, were identified. These genes could be excellent candidates for a key role in the maturity.
Asunto(s)
Desarrollo Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Transcriptoma/genética , Animales , Cruzamiento , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Genoma , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los ResultadosRESUMEN
Versicolorin A (VerA), a precursor of the potent carcinogen Aflatoxin B1 (AFB1), is an emerging mycotoxin. Recent research has highlighted the mutagenic and genotoxic properties of VerA, yet several facets of its pronounced toxicity remain unexplored. In the present study, we investigated early (6 h) transcriptomic changes induced by VerA in differentiated intestinal cells in non-cytotoxic conditions (1 and 3 µM) and compared its effects to those of AFB1 at 1 µM. Our findings indicated that VerA led to substantial alterations in global gene expression profiles, while AFB1 did not exhibit the same effects. As expected, both toxins caused alterations in gene expression associated with well-known aspects of their toxicity, including mutagenicity, genotoxicity, oxidative stress, and apoptosis. However, we also observed novel features of VerA toxicity, including the ability to cause mitochondrial dysfunction and to trigger a type-1 interferon response, at least partially mediated by cGAS-STING. VerA also induced changes in the expression of genes involved in the regulation of cell shape and adhesion, transcription/translation as well as genes associated with tumor biology. Our results provide new evidence of the high toxicity of VerA and underscore the importance of further assessing the risks associated with its presence in food.
RESUMEN
SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS: The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS: Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Caseínas/farmacología , Hígado/metabolismo , Dieta Occidental/efectos adversos , Aminoácidos/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en GrasaRESUMEN
Background & Aims: The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to an acute pharmacological activation has seldom been investigated. Methods: The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with vehicle. Results: Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abolished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-responsiveness in female mice supplemented with dietary choline. Conclusions: More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury. Impact and implications: CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to activate CAR.
RESUMEN
Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.