Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 289(27): 19110-9, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24841202

RESUMEN

The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.


Asunto(s)
Señalización del Calcio , Citocromos c/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Animales , Señalización del Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Ayuno , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Cetoácidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
Am J Med Genet B Neuropsychiatr Genet ; 159B(1): 61-71, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22095694

RESUMEN

Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocognitive abnormalities. Although there is substantial evidence that haploinsufficiency for TBX1 plays a role in the physical features of del22q11.2, it is not known which gene(s) in the critical 1.5 Mb region are responsible for the observed spectrum of behavioral phenotypes. We identified an individual with a balanced translocation 46,XY,t(1;22)(p36.1;q11.2) and a behavioral phenotype characterized by cognitive impairment, autism, and schizophrenia in the absence of congenital malformations. Using somatic cell hybrids and comparative genomic hybridization (CGH) we mapped the chromosome-22 breakpoint within intron 7 of the GNB1L gene. Copy number evaluations and direct DNA sequencing of GNB1L in 271 schizophrenia and 513 autism cases revealed dup22q11.2 in two families with autism and private GNB1L missense variants in conserved residues in three families (P = 0.036). The identified missense variants affect residues in the WD40 repeat domains and are predicted to have deleterious effects on the protein. Prior studies provided evidence that GNB1L may have a role in schizophrenia. Our findings support involvement of GNB1L in ASDs as well.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Adolescente , Secuencia de Bases , Estudios de Casos y Controles , Niño , Preescolar , Rotura Cromosómica , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Familia , Femenino , Duplicación de Gen/genética , Humanos , Recién Nacido , Cariotipificación , Masculino , Datos de Secuencia Molecular , Mutación/genética , Mutación Missense/genética , Linaje , Translocación Genética
3.
Brain Res ; 1204: 53-8, 2008 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-18342296

RESUMEN

Dimethyl sulfoxide (DMSO) is commonly used as a solvent for water-insoluble drugs. Given that DMSO has varying cellular and behavioral effects ranging from increased membrane permeability to toxicity, microinjection of DMSO as a vehicle could confound the effects of other drugs. For example, DMSO is often used as a vehicle for studies examining the neurochemical mechanisms underlying morphine antinociception. Given that the ventrolateral periaqueductal gray (vlPAG) plays a major role in morphine antinociception and tolerance, the effects of DMSO on morphine antinociception mediated by the vlPAG needs to be evaluated. The present experiment tested whether co-administration of DMSO (0, 0.2, 2, or 20%) would alter the antinociceptive effect of microinjecting morphine into the vlPAG. DMSO had no effect on nociception when microinjected into the vlPAG alone, but 2% DMSO enhanced morphine potency when co-administered with morphine. In contrast, twice daily microinjections of DMSO (5 or 20%) for two days reduced the potency of subsequent microinjections of morphine into the vlPAG--an effect that persisted for at least one week. A similar rightward shift in the morphine dose-response curve was caused by morphine tolerance. Co-administration of morphine and DMSO during the pretreatment did not cause a greater shift in the morphine dose-response curve compared to morphine pretreated alone. In conclusion, DMSO can alter morphine antinociception following both acute (enhancement) and chronic (inhibition) administration depending on the concentration. These data reinforce the need to be cautious when using DMSO as a vehicle for drug administration.


Asunto(s)
Analgésicos Opioides/farmacología , Dimetilsulfóxido/farmacología , Morfina/farmacología , Sustancia Gris Periacueductal/fisiología , Animales , Interpretación Estadística de Datos , Dimetilsulfóxido/administración & dosificación , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Sinergismo Farmacológico , Tolerancia a Medicamentos , Masculino , Microinyecciones , Dimensión del Dolor/efectos de los fármacos , Sustancia Gris Periacueductal/anatomía & histología , Vehículos Farmacéuticos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos
4.
PLoS One ; 7(3): e33070, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479359

RESUMEN

BACKGROUND: Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. METHODOLOGY/PRINCIPAL FINDINGS: Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. CONCLUSIONS/SIGNIFICANCE: An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other biologically important molecules.


Asunto(s)
Técnicas Biosensibles/métodos , Islotes Pancreáticos/metabolismo , Consumo de Oxígeno , Oxígeno/análisis , Alginatos/química , Animales , Técnicas Biosensibles/instrumentación , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Técnicas In Vitro , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/química , Cinética , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microscopía Fluorescente , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
5.
J Neurodev Disord ; 3(1): 39-49, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21484596

RESUMEN

Two functionally related genes, FOXP2 and CNTNAP2, influence language abilities in families with rare syndromic and common nonsyndromic forms of impaired language, respectively. We investigated whether these genes are associated with component phenotypes of dyslexia and measures of sequential motor ability. Quantitative transmission disequilibrium testing (QTDT) and linear association modeling were used to evaluate associations with measures of phonological memory (nonword repetition, NWR), expressive language (sentence repetition), reading (real word reading efficiency, RWRE; word attack, WATT), and timed sequential motor activities (rapid alternating place of articulation, RAPA; finger succession in the dominant hand, FS-D) in 188 family trios with a child with dyslexia. Consistent with a prior study of language impairment, QTDT in dyslexia showed evidence of CNTNAP2 single nucleotide polymorphism (SNP) association with NWR. For FOXP2, we provide the first evidence for SNP association with component phenotypes of dyslexia, specifically NWR and RWRE but not WATT. In addition, FOXP2 SNP associations with both RAPA and FS-D were observed. Our results confirm the role of CNTNAP2 in NWR in a dyslexia sample and motivate new questions about the effects of FOXP2 in neurodevelopmental disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA