Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Neuropathol ; 144(3): 589-601, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35838824

RESUMEN

We describe in vivo follow-up PET imaging and postmortem findings from an autosomal dominant Alzheimer's disease (ADAD) PSEN1 E280A carrier who was also homozygous for the APOE3 Christchurch (APOE3ch) variant and was protected against Alzheimer's symptoms for almost three decades beyond the expected age of onset. We identified a distinct anatomical pattern of tau pathology with atypical accumulation in vivo and unusual postmortem regional distribution characterized by sparing in the frontal cortex and severe pathology in the occipital cortex. The frontal cortex and the hippocampus, less affected than the occipital cortex by tau pathology, contained Related Orphan Receptor B (RORB) positive neurons, homeostatic astrocytes and higher APOE expression. The occipital cortex, the only cortical region showing cerebral amyloid angiopathy (CAA), exhibited a distinctive chronic inflammatory microglial profile and lower APOE expression. Thus, the Christchurch variant may impact the distribution of tau pathology, modulate age at onset, severity, progression, and clinical presentation of ADAD, suggesting possible therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/patología , Homocigoto , Humanos , Tomografía de Emisión de Positrones , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Neuron ; 112(11): 1778-1794.e7, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417436

RESUMEN

Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Presenilina-1 , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Presenilina-1/genética , Masculino , Femenino , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Análisis de Secuencia de ARN/métodos , Autofagia/genética , Transcriptoma , Anciano , Neuronas/metabolismo , Neuronas/patología , Persona de Mediana Edad , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión a Tacrolimus/genética , Anciano de 80 o más Años , Análisis de la Célula Individual
3.
Brain Pathol ; 33(2): e13119, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36130084

RESUMEN

In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aß. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Homocigoto , Mutación , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo
4.
Nat Med ; 29(5): 1243-1252, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37188781

RESUMEN

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Heterocigoto , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal
5.
Brain Pathol ; 32(6): e13097, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35695802

RESUMEN

We studied small vessel disease (SVD) pathology in Familial Alzheimer's disease (FAD) subjects carrying the presenilin 1 (PSEN1) p.Glu280Ala mutation in comparison to those with sporadic Alzheimer's disease (SAD) as a positive control for Alzheimer's pathology and Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) bearing different NOTCH3 mutations, as positive controls for SVD pathology. Upon magnetic resonance imaging (MRI) in life, some FAD showed mild white matter hyperintensities and no further radiologic evidence of SVD. In post-mortem studies, total SVD pathology in cortical areas and basal ganglia was similar in PSEN1 FAD and CADASIL subjects, except for the feature of arteriosclerosis which was higher in CADASIL subjects than in PSEN1 FAD subjects. Further only a few SAD subjects showed a similar degree of SVD pathology as observed in CADASIL. Furthermore, we found significantly enlarged perivascular spaces in vessels devoid of cerebral amyloid angiopathy in FAD compared with SAD and CADASIL subjects. As expected, there was greater fibrinogen-positive perivascular reactivity in CADASIL but similar reactivity in PSEN1 FAD and SAD groups. Fibrinogen immunoreactivity correlated with onset age in the PSEN1 FAD cases, suggesting increased vascular permeability may contribute to cognitive decline. Additionally, we found reduced perivascular expression of PDGFRß AQP4 in microvessels with enlarged PVS in PSEN1 FAD cases. We demonstrate that there is Aß-independent SVD pathology in PSEN1 FAD, that was marginally lower than that in CADASIL subjects although not evident by MRI. These observations suggest presence of covert SVD even in PSEN1, contributing to disease progression. As is the case in SAD, these consequences may be preventable by early recognition and actively controlling vascular disease risk, even in familial forms of dementia.


Asunto(s)
Enfermedad de Alzheimer , CADASIL , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , CADASIL/metabolismo , Fibrinógeno
6.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063125

RESUMEN

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Asunto(s)
Barrera Hematoencefálica/virología , Sistema Nervioso Central/virología , SARS-CoV-2/fisiología , Internalización del Virus , Anticuerpos/farmacología , Benzamidinas/farmacología , COVID-19/patología , COVID-19/virología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/virología , Guanidinas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA