Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(14): 5504-5520, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37000909

RESUMEN

Humans have made profound changes to the Earth. The resulting societal challenges of the Anthropocene (e.g., climate change and impacts, renewable energy, adaptive infrastructure, disasters, pandemics, food insecurity, and biodiversity loss) are complex and systemic, with causes, interactions, and consequences that cascade across a globally connected system of systems. In this Critical Review, we turn to our "origin story" for insight, briefly tracing the formation of the Universe and the Earth, the emergence of life, the evolution of multicellular organisms, mammals, primates, and humans, as well as the more recent societal transitions involving agriculture, urbanization, industrialization, and computerization. Focusing on the evolution of the Earth, genetic evolution, the evolution of the brain, and cultural evolution, which includes technological evolution, we identify a nested evolutionary sequence of geophysical, biophysical, sociocultural, and sociotechnical systems, emphasizing the causal mechanisms that first formed, and then transformed, Earth systems into Anthropocene systems. Describing how the Anthropocene systems coevolved, and briefly illustrating how the ensuing societal challenges became tightly integrated across multiple spatial, temporal, and organizational scales, we conclude by proposing an evolutionary, system-of-systems, convergence paradigm for the entire family of interdependent societal challenges of the Anthropocene.


Asunto(s)
Agricultura , Biodiversidad , Animales , Humanos , Urbanización , Mamíferos
2.
Environ Res ; 221: 115260, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36649844

RESUMEN

Cyanobacteria can sense different light color by adjusting the components of photosynthetic pigments including chlorophyll a (Chl a), phycoerythrin (PE), and phycocyanin (PC), etc. Filamentous cyanobacteria are the main producer of 2-methylisoborneol (MIB) and many can increase their PE levels so that they are more competitive in subsurface layer where green light is more abundant, and have caused extensive odor problems in drinking water reservoirs. Here, we identified the potential correlation between MIB biosynthesis and ambient light color induced chromatic acclimation (CA) of a MIB-producing Pseudanabaena strain. The results suggest Pseudanabaena regulates the pigment proportion through Type III CA (CA3), by increasing PE abundance and decreasing PC in green light. The biosynthesis of MIB and Chl a share the common precursor, and are positively correlated with statistical significance regardless of light color (R2=0.68; p<0.001). Besides, the PE abundance is also positively correlated with Chl a in green light (R2=0.57; p=0.019) since PE is the antenna that can only transfer the energy to PC and Chl a. In addition, significantly higher MIB production was observed in green light since more Chl a was synthesized.


Asunto(s)
Cianobacterias , Clorofila A , Cianobacterias/fisiología , Ficoeritrina , Ficocianina , Aclimatación
3.
BMC Public Health ; 22(1): 313, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168583

RESUMEN

BACKGROUND: The use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners. METHODS: A conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children's physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver's income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state. RESULTS: Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment. CONCLUSIONS: This analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children's environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.


Asunto(s)
Salud Ambiental , Plomo , Niño , Salud Infantil , Preescolar , Humanos , Salud Pública , Análisis de Sistemas
4.
Environ Sci Technol ; 55(1): 25-43, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33319994

RESUMEN

A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Polvo/análisis , Humanos , Compuestos Orgánicos/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Indoor Air ; 31(6): 2070-2083, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33991124

RESUMEN

Large surface area-to-volume ratios indoors cause heterogeneous interactions to be especially important. Semi-volatile organic compounds can deposit on impermeable indoor surfaces forming thin organic films. We developed a new model to simulate the initial film formation by treating gas-phase diffusion and turbulence through a surface boundary layer and multi-layer reversible adsorption on rough surfaces, as well as subsequent film growth by resolving bulk diffusion and chemical reactions in a film. The model was applied with consistent parameters to reproduce twenty-one sets of film formation measurements due to multi-layer adsorption of multiple phthalates onto different indoor-relevant surfaces, showing that the films should initially be patchy with the formation of pyramid-like structures on the surface. Sensitivity tests showed that highly turbulent conditions can lead to the film growing by more than a factor of two compared to low turbulence conditions. If surface films adopt an ultra-viscous state with bulk diffusion coefficients of less than 10-18  cm2 s-1 , a significant decrease in film growth is expected. The presence of chemical reactions in the film has the potential to increase the rate of film growth by nearly a factor of two.


Asunto(s)
Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Adsorción , Difusión , Cinética , Compuestos Orgánicos Volátiles/análisis
6.
Environ Model Softw ; 135: 104885, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33041631

RESUMEN

System-of-systems approaches for integrated assessments have become prevalent in recent years. Such approaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio-environmental (or social-ecological) system aiming to holistically inform policy and decision-making processes. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to inconsistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multidisciplinary team of researchers, from engineering, natural and social sciences, have come together to detail socio-technical practices and challenges that arise in the consideration of scale throughout the socio-environmental modeling process. We identify key paths forward, focused on explicit consideration of scale and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation process. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and solutions to major socio-environmental problems.

7.
Environ Sci Technol ; 54(5): 2658-2666, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31971782

RESUMEN

To understand water quality degradation during hypoxia, we need to understand sediment oxygen fluxes, the main oxygen sink in shallow hypolimnia. Kinetic models, which integrate diffusion and consumption of dissolved oxygen (DO) in sediments, usually assume a downward flux of DO from the sediment-water interface (SWI) with a zero-flux condition at the lower boundary of the oxic sediment layer. In this paper, we separately account for the oxidation of an upward flux of reduced compounds by introducing a negative flux of DO as a lower boundary condition. Using in situ measurements in two lakes, kinetic models were fit to DO microprofiles using zero-order and first-order kinetics with both zero and non-zero lower boundary conditions. Based on visual inspection and goodness-of-fit criteria, the negative-flux lower boundary condition, -0.25 g O2 m-2 d-1, was found to more accurately describe DO consumption kinetics. Fitted zero-order rate constants ranged from 50 to 510 mg L-1 d-1, and first-order rate constants ranged from 60 to 400 d-1, which agree well with prior laboratory studies. DO fluxes at the SWI calculated from the simulated profiles with the negative-flux lower boundary condition also showed better agreement with the observed DO fluxes than the simulated profiles with the zero-flux lower boundary condition.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Sedimentos Geológicos , Cinética , Oxígeno
8.
Environ Sci Technol ; 53(23): 13583-13597, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31617344

RESUMEN

Risk-based chemical safety assessments are increasingly being conducted to support chemical management decisions and informed substitution to protect public health. Rapid evaluation and prioritization of large numbers of chemicals used in materials, products, and other indoor articles has become a major focus of chemical risk management strategies. Internationally, although a shared understanding of the value of rapid risk-based evaluations appears to be emerging, implementation strategies and associated management decisions vary from one agency and jurisdiction to another. This paper highlights the international chemical risk management landscape focusing on phthalates as an example, and reviews how phthalate exposure assessments have been performed, resulting at times in different decisions based on the application of scientific information within different policy contexts. In general, the need for efficient and effective risk-based assessment approaches is driving increased needs for high-quality exposure data and validated, mechanistic exposure models. Further development of mechanistic models and related parameters will reduce uncertainties in exposure estimates and support scientific risk-based evaluations of chemical/product combinations for a variety of decisions.


Asunto(s)
Exposición a Riesgos Ambientales , Ácidos Ftálicos , Humanos , Medición de Riesgo , Gestión de Riesgos
9.
Indoor Air ; 29(1): 17-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30387208

RESUMEN

Emission, transport, and fate of semi-volatile organic compounds (SVOCs), which include plasticizers, flame retardants, pesticides, biocides, and oxidation products of volatile organic compounds, are influenced in part by their tendency to sorb to indoor surfaces. A thin organic film enhances this effect, because it acts as both an SVOC sink and a source, thus potentially prolonging human exposure. Unfortunately, our ability to describe the initial formation and subsequent growth of organic films on indoor surfaces is limited. To overcome this gap, we propose a mass transfer model accounting for adsorption, condensation, and absorption of multiple gas-phase SVOCs on impervious, vertical indoor surfaces. Further model development and experimental research are needed including more realistic scenarios accounting for surface heterogeneity, non-ideal organic mixtures, and particle deposition.


Asunto(s)
Contaminación del Aire Interior , Modelos Químicos , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Absorción Fisicoquímica , Adsorción , Contaminantes Atmosféricos , Contaminación del Aire Interior/análisis , Humanos , Compuestos Orgánicos Volátiles/análisis
10.
Indoor Air ; 29(5): 704-726, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220370

RESUMEN

Indoor air quality (IAQ), as determined by the concentrations of indoor air pollutants, can be predicted using either physically based mechanistic models or statistical models that are driven by measured data. In comparison with mechanistic models mostly used in unoccupied or scenario-based environments, statistical models have great potential to explore IAQ captured in large measurement campaigns or in real occupied environments. The present study carried out the first literature review of the use of statistical models to predict IAQ. The most commonly used statistical modeling methods were reviewed and their strengths and weaknesses discussed. Thirty-seven publications, in which statistical models were applied to predict IAQ, were identified. These studies were all published in the past decade, indicating the emergence of the awareness and application of machine learning and statistical modeling in the field of IAQ. The concentrations of indoor particulate matter (PM2.5 and PM10 ) were the most frequently studied parameters, followed by carbon dioxide and radon. The most popular statistical models applied to IAQ were artificial neural networks, multiple linear regression, partial least squares, and decision trees.


Asunto(s)
Contaminación del Aire Interior/análisis , Árboles de Decisión , Aprendizaje Automático , Redes Neurales de la Computación , Análisis de Regresión , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Humanos , Modelos Estadísticos
11.
Environ Sci Technol ; 52(5): 2918-2925, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29420885

RESUMEN

Phthalates and phthalate alternatives are semivolatile organic compounds (SVOCs) present in many PVC products as plasticizers to enhance product performance. Knowledge of the mass-transfer parameters, including the equilibrium concentration in the air in contact with the product surface ( y0), will greatly improve the ability to estimate the emission rate of SVOCs from these products and to assess human exposure. The objective of this study was to measure y0 for different PVC products and to evaluate its relationship with the material-phase concentrations ( C0). Also, C0 and y0 data from other sources were included, resulting in a substantially larger data set ( Ntotal = 34, T = 25 °C) than found in previous studies. The results show that the material/gas equilibrium relationship does not follow Raoult's law and that therefore the assumption of an ideal solution is invalid. Instead, Henry's law applies, and the Henry's law constant for all target SVOCs consists of the respective pure liquid vapor pressure and an activity coefficient γ, which accounts for the nonideal nature of the solution. For individual SVOCs, a simple partitioning relationship exists, but Henry's law is more generally applicable and will be of greater value in rapid exposure assessment procedures.


Asunto(s)
Contaminación del Aire Interior , Gases , Humanos , Compuestos Orgánicos , Cloruro de Polivinilo , Presión de Vapor
12.
Environ Sci Technol ; 52(6): 3583-3590, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29446939

RESUMEN

The particle/gas partition coefficient Kp is an important parameter affecting the fate and transport of indoor semivolatile organic compounds (SVOCs) and resulting human exposure. Unfortunately, experimental measurements of Kp exist almost exclusively for atmospheric polycyclic aromatic hydrocarbons, with very few studies focusing on SVOCs that occur in indoor environments. A specially designed tube chamber operating in the laminar flow regime was developed to measure Kp of the plasticizer di-2-ethylhexyl phthalate (DEHP) for one inorganic (ammonium sulfate) and two organic (oleic acid and squalane) particles. The values of Kp for the organic particles (0.23 ± 0.13 m3/µg for oleic acid and 0.11 ± 0.10 m3/µg for squalane) are an order of magnitude higher than those for the inorganic particles (0.011 ± 0.004 m3/µg), suggesting that the process by which the particles accumulate SVOCs is different. A mechanistic model based on the experimental design reveals that the presence of the particles increases the gas-phase concentration gradient in the boundary layer, resulting in enhanced mass transfer from the emission source into the air. This novel approach provides new insight into experimental designs for rapid Kp measurement and a sound basis for investigating particle-mediated mass transfer of SVOCs.


Asunto(s)
Contaminación del Aire Interior , Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Plastificantes
13.
Environ Sci Technol ; 51(5): 2907-2913, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28140579

RESUMEN

Sorption of semivolatile organic compounds (SVOCs) onto interior surfaces, often referred to as the "sink effect", and their subsequent re-emission significantly affect the fate and transport of indoor SVOCs and the resulting human exposure. Unfortunately, experimental challenges and the large number of SVOC/surface combinations have impeded progress in understanding sorption of SVOCs on indoor surfaces. An experimental approach based on a diffusion model was thus developed to determine the surface/air partition coefficient K of di-2-ethylhexyl phthalate (DEHP) on typical impervious surfaces including aluminum, steel, glass, and acrylic. The results indicate that surface roughness plays an important role in the adsorption process. Although larger data sets are needed, the ability to predict K could be greatly improved by establishing the nature of the relationship between surface roughness and K for clean indoor surfaces. Furthermore, different surfaces exhibit nearly identical K values after being exposed to kitchen grime with values that are close to those reported for the octanol/air partition coefficient. This strongly supports the idea that interactions between gas-phase DEHP and soiled surfaces have been reduced to interactions with an organic film. Collectively, the results provide an improved understanding of equilibrium partitioning of SVOCs on impervious surfaces.


Asunto(s)
Contaminación del Aire Interior , Dietilhexil Ftalato , Adsorción , Humanos , Modelos Teóricos , Compuestos Orgánicos
14.
Environ Sci Technol ; 50(13): 6830-45, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152660

RESUMEN

While sustainability is an essential concept to ensure the future of humanity and the integrity of the resources and ecosystems on which we depend, identifying a comprehensive yet realistic way to assess and enhance sustainability may be one of the most difficult challenges of our time. We review the primary environmental sustainability assessment approaches, categorizing them as either being design-based or those that employ computational frameworks and/or indicators. We also briefly review approaches used for assessing economic and social sustainability because sustainability necessitates integrating environmental, economic, and social elements. We identify the collective limitations of the existing assessment approaches, showing that there is not a consistent definition of sustainability, that the approaches are generally not comprehensive and are subject to unintended consequences, that there is little to no connection between bottom-up and top-down approaches, and that the field of sustainability is largely fragmented, with a range of academic disciplines and professional organizations pursuing similar goals, but without much formal coordination. We conclude by emphasizing the need for a comprehensive definition of sustainability (that integrates environmental, economic, and social aspects) with a unified system-of-systems approach that is causal, modular, tiered, and scalable, as well as new educational and organizational structures to improve systems-level interdisciplinary integration.


Asunto(s)
Ecosistema , Ambiente , Conservación de los Recursos Naturales , Humanos
15.
Environ Sci Technol ; 50(18): 10082-8, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27571317

RESUMEN

Phthalates and alternative plasticizers are semivolatile organic compounds (SVOCs), an important class of indoor pollutants that may have significant adverse effects on human health. Unfortunately, models that predict emissions of and the resulting exposure to SVOCs have substantial uncertainties. One reason is that the characteristics governing emissions, transport, and exposure are usually strongly dependent on vapor pressure. Furthermore, available data for phthalates exhibit significant variability, and vapor pressures for the various alternatives are usually unavailable. For these reasons, a new approach based on modeling of the evaporation process was developed to determine vapor pressures of phthalates and alternate plasticizers. A laminar flow forced convection model was used in the design of a partial saturator (PS) tube. The mass transfer mechanisms in the PS tube are accurately modeled and enable the determination of vapor pressure even when the carrier gas is not completely saturated, avoiding the complicated procedure to establish vapor saturation. The measured vapor pressures ranged from about 10(-2) to 10(-7) Pa. Compared to the traditional gas saturation method, the model-based approach is advantageous in terms of both predictability and simplicity. The knowledge provides new insight into experimental design and a sound basis for further method development.


Asunto(s)
Plastificantes , Presión de Vapor , Gases , Humanos , Modelos Teóricos , Compuestos Orgánicos
16.
J Air Waste Manag Assoc ; 64(4): 468-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24843917

RESUMEN

UNLABELLED: The measurement of volatile organic compound (VOC) emissions from building products and materials by manufacturers and testing laboratories, and the use of the test results for labeling programs, continue to expand. One issue that hinders wide acceptance for chamber product testing is the lack of a reference material to validate test chamber performance. To meet this need, the National Institute of Standards and Technology (NIST) and Virginia Tech (VT) have developed a prototype reference material that emits a single VOC similar to the emissions of a diffusion-controlled building product source with a dynamic emissions profile. The prototype material has undergone extensive testing at NIST and a pilot interlaboratory study (ILS) with four laboratories. The next development step is an evaluation of the prototype source in multiple-sized chambers of 14 laboratories in seven countries. Each laboratory was provided duplicate specimens and a test protocol. Study results identified significant issues related to the need to store the source at a subzero Celsius temperature until tested and possible inconsistencies in large chambers. For laboratories using a small chamber and meeting all the test method criteria, the results were very encouraging with relative standard deviations ranging from 5% to 10% across the laboratories. IMPLICATIONS: Currently, the chamber performance of laboratories conducting product VOC emissions testing is assessed through interlaboratory studies (ILS) using a source with an unknown emission rate. As a result, laboratory proficiency can only be based on the mean and standard deviation of emission rates measured by the participating ILS laboratories. A reference material with a known emission rate has the potential to provide an independent assessment of laboratory performance as well as improve the quality of interlaboratory studies. Several international laboratories with different chamber testing systems demonstrated the ability to measure the emission rate of such a reference material within an acceptable measurement uncertainty.


Asunto(s)
Técnicas de Química Analítica/normas , Materiales de Construcción/análisis , Monitoreo del Ambiente/normas , Formaldehído/análisis , Tolueno/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Difusión , Cooperación Internacional , Relaciones Interprofesionales , Proyectos Piloto , Estándares de Referencia , Volatilización
17.
Environ Sci Technol ; 47(15): 8083-90, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23713687

RESUMEN

Environmental sustainability assessment is a rapidly growing field where measures of sustainability are used within an assessment framework to evaluate and compare alternative actions. Here we argue for the importance of evaluating environmental sustainability of water at the watershed scale. We review existing frameworks in brief before reviewing watershed-relevant measures in more detail. While existing measures are diverse, overlapping, and interdependent, certain attributes that are important for watersheds are poorly represented, including spatial explicitness and the effect of natural watershed components, such as rivers. Most studies focus on one or a few measures, but a complete assessment will require use of many existing measures, as well as, perhaps, new ones. Increased awareness of the broad dimensions of environmental sustainability as applied to water management should encourage integration of existing approaches into a unified assessment framework appropriate for watersheds.


Asunto(s)
Conservación de los Recursos Naturales , Agua Dulce , Ríos
18.
Environ Sci Technol ; 47(22): 12946-51, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24102115

RESUMEN

Formaldehyde, a known human carcinogen and mucous membrane irritant, is emitted from a variety of building materials and indoor furnishings. The drive to improve building energy efficiency by decreasing ventilation rates increases the need to better understand emissions from indoor products and to identify and develop lower emitting materials. To help meet this need, formaldehyde emissions from indoor materials are typically measured using environmental chambers. However, chamber testing results are frequently inconsistent and provide little insight into the mechanisms governing emissions. This research addresses these problems by (1) developing a reference formaldehyde emissions source that can be used to validate chamber testing methods for characterization of dynamic sources of formaldehyde emissions and (2) demonstrating that emissions from finite formaldehyde sources can be predicted using a fundamental mass-transfer model. Formaldehyde mass-transfer mechanisms are elucidated, providing practical approaches for developing diffusion-controlled reference materials that mimic actual sources. The fundamental understanding of emissions mechanisms can be used to improve emissions testing and guide future risk reduction actions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Formaldehído/análisis , Adsorción , Difusión , Gases/análisis , Humanos , Humedad , Modelos Teóricos , Polienos/química , Polímeros/química , Estándares de Referencia
19.
Environ Sci Technol ; 47(6): 2696-703, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23410053

RESUMEN

Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 µg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/µg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health.


Asunto(s)
Contaminación del Aire Interior/análisis , Dietilhexil Ftalato/análisis , Monitoreo del Ambiente/instrumentación , Plastificantes/análisis , Sulfato de Amonio/química , Diseño de Equipo , Pisos y Cubiertas de Piso , Tamaño de la Partícula , Cloruro de Polivinilo/química , Volatilización
20.
Environ Sci Process Impacts ; 25(4): 818-831, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36897109

RESUMEN

Assessing exposure to semivolatile organic compounds (SVOCs) that are emitted from consumer products and building materials in indoor environments is critical for reducing the associated health risks. Many modeling approaches have been developed for SVOC exposure assessment indoors, including the DustEx webtool. However, the applicability of these tools depends on the availability of model parameters such as the gas-phase concentration at equilibrium with the source material surface, y0, and the surface-air partition coefficient, Ks, both of which are typically determined in chamber experiments. In this study, we compared two types of chamber design, a macro chamber, which downscaled the dimensions of a room to a smaller size with roughly the same surface-to-volume ratio, and a micro chamber, which minimized the sink-to-source surface area ratio to shorten the time required to reach steady state. The results show that the two chambers with different sink-to-source surface area ratios yield comparable steady-state gas- and surface-phase concentrations for a range of plasticizers, while the micro chamber required significantly shorter times to reach steady state. Using y0 and Ks measured with the micro chamber, we conducted indoor exposure assessments for di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP) and di(2-ethylhexyl) terephthalate (DEHT) with the updated DustEx webtool. The predicted concentration profiles correspond well with existing measurements and demonstrate the direct applicability of chamber data in exposure assessments.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire Interior/análisis , Dibutil Ftalato , Materiales de Construcción , Compuestos Orgánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA