Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(5): e2306274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759380

RESUMEN

Efficient electrocatalysts capable of operating continuously at industrial ampere-level current densities are crucial for large-scale applications of electrocatalytic water decomposition for hydrogen production. However, long-term industrial overall water splitting using a single electrocatalyst remains a major challenge. Here, bimetallic polyphthalocyanine (FeCoPPc)-anchored Ru nanoclusters, an innovative electrocatalyst comprising the hydrogen evolution reaction (HER) active Ru and the oxygen evolution reaction (OER) active FeCoPPc, engineered for efficient overall water splitting are demonstrated. By density functional theory calculations and systematic experiments, the electrocatalytic coenhancement effect resulting from unique charge redistribution, which synergistically boosts the HER activity of Ru and the OER activity of FeCoPPc by optimizing the adsorption energy of intermediates, is unveiled. As a result, even at a large current density of 2.0 A cm-2 , the catalyst exhibits low overpotentials of 220 and 308 mV, respectively, for HER and OER. It exhibits excellent stability, requiring only 1.88 V of cell voltage to achieve a current density of 2.0 A cm-2 in a 6.0 m KOH electrolyte at 70 °C, with a remarkable operational stability of over 100 h. This work provides a new electrocatalytic coenhancement strategy for the design and synthesis of electrocatalyst, paving the way for industrial-scale overall water splitting applications.

2.
Small ; : e2401429, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808805

RESUMEN

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

3.
Langmuir ; 40(13): 6962-6970, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38523302

RESUMEN

It is critical to remove organic contaminants from wastewater released by the printing and dyeing industry for addressing water pollution issue. Therefore, the fabrication of new adsorbents with excellent removal efficiencies is an urgent task. A composite of MIL-101 partially functionalized with -SO3H (MIL-101-SO3H) and graphene oxide (GO) was prepared by assembling MIL-101-SO3H truncated octahedrons on the GO framework. The synthesized MIL-101-SO3H@GO has a superior adsorption efficiency for anionic azo dyes. The maximum adsorption capacities of MIL-101-SO3H@GO-1 for Congo red, methyl orange, acid orange 7, and acid orange G reached 2711.3, 818.8, 551.2, and 319.8 mg/g, respectively, which are considerably higher than those obtained using unmodified MIL-101. This is because additional interactions that promote azo dye adsorption, such as hydrogen bonding between the dye and the sulfonic acid groups of MIL-101-SO3H or the carboxyl groups of GO, were induced, and agglomerate pores that accommodated the dye were formed in the composite. The ultrahigh removal efficiency of the composite for azo dyes is mainly driven by hydrogen bonding, electrostatic interactions, π-π stacking between the MIL-101-SO3H@GO and dye molecules, synergistic interactions at the interface of GO and MIL-101-SO3H microcrystals, and the pore-filling effect. Understanding these driving forces for dye adsorption can contribute to the development of sustainable and functionally modified metal-organic framework composite adsorbents.

4.
Small ; 19(36): e2302132, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127874

RESUMEN

Ultrathin 2D porous carbon-based materials offer numerous fascinating electrical, catalytic, and mechanical properties, which hold great promise in various applications. However, it remains a formidable challenge to fabricate these materials with tunable morphology and composition by a simple synthesis strategy. Here, a facile one-step self-flowering method without purification and harsh conditions is reported for large-scale fabrication of high-quality ultrathin (≈1.5 nm) N-doped porous carbon nanosheets (NPC) and their composites. It is demonstrated that the layered tannic/oxamide (TA/oxamide) hybrid is spontaneously blown, exfoliated, bloomed, in situ pore-formed, and aromatized during pyrolysis to form flower-like aggregated NPC. This universal one-step self-flowering system is compatible with various precursors to construct multiscale NPC-based composites (Ru@NPC, ZnO@NPC, MoS2 @NPC, Co@NPC, rGO@NPC, etc.). Notably, the programmable architecture enables NPC-based materials with excellent multifunctional performances, such as microwave absorption and hydrogen evolution. This work provides a facile, universal, scalable, and eco-friendly avenue to fabricate functional ultrathin porous carbon-based materials with programmability.

5.
Pharmacol Res ; 195: 106863, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37480971

RESUMEN

Human papillomavirus (HPV) infection is a causative agent of cervical cancer (CC). N6-methyladenosine (m6A) modification is implicated in carcinogenesis and tumor progression. However, the involvement of m6A modification in HPV-involved CC remains unclear. Here we showed that HPV E6/7 oncoproteins affected the global m6A modification and E7 specifically promoted the expression of ALKBH5. We found that ALKBH5 was significantly upregulated in CC and might serve as a valuable prognostic marker. Forced expression of ALKBH5 enhanced the malignant phenotypes of CC cells. Mechanistically, we discovered that E7 increased ALKBH5 expression through E2F1-mediated activation of the H3K27Ac and H3K4Me3 histone modifications, as well as post-translational modification mediated by DDX3. ALKBH5-mediated m6A demethylation enhanced the expression of PAK5. The m6A reader YTHDF2 bound to PAK5 mRNA and regulated its stability in an m6A-dependent manner. Moreover, ALKBH5 promoted tumorigenesis and metastasis of CC by regulating PAK5. Overall, our findings herein demonstrate a significant role of ALKBH5 in CC progression in HPV-positive cells. Thus, we propose that ALKBH5 may serve as a prognostic biomarker and therapeutic target for CC patients.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Infecciones por Papillomavirus/genética , Carcinogénesis/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
6.
Angew Chem Int Ed Engl ; 62(51): e202312638, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37759361

RESUMEN

Although a variety of dynamic covalent bonds have been successfully used in the development of diverse sustainable thermosetting polymers and their composites, solving the trade-off between recovery efficiency and comprehensive properties is still a major challenge. Herein, a "one-stone-two-birds" strategy of lower rotational energy barrier (Er ) phosphate-derived Diels-Alder (DA) cycloadditions was proposed for easily recyclable carbon fiber (CF)-reinforced epoxy resins (EPs) composites. In such a strategy, the phosphate spacer with lower Er accelerated the segmental mobility and dynamic DA exchange reaction for network rearrangement to achieve high-efficiency repairing, reprocessing of the EPs matrix and its composites and rapid nondestructive recycling of CF; meanwhile, incorporating phosphorus-based units especially reduced their fire hazards. The resulting materials simultaneously showed excellent thermal/mechanical properties, superb fire safety and facile recyclability, realizing the concept of recycling for high-performance thermosetting polymers and composites. This strategy is of great significance for understanding and enriching the molecular connotation of DA chemistry, making it potentially applicable to the design and development of a wide range of dynamic covalent adaptable materials toward practical cutting-edge-tech applications.

7.
J Am Chem Soc ; 142(25): 10905-10909, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32510211

RESUMEN

Plasmonic sensors are promising for ultrasensitive chemical and biological analysis. However, there are increasing experimental findings that cannot be well addressed by theoretical calculations, including the nonlinear dependence of the plasmonic peak wavelength on the refractive index (RI) and the ultrahigh sensitivity beyond the theoretical limit. The gap between experiments and theoretical calculations is that the bulk RI (BRI) used for calculation could be different from the interfacial RI (IRI) determining the electromagnetic response as a result of the interaction of molecules with the surface. But there is still no method to determine the IRI. Herein, we quantitatively determine the IRI by disentangling the surface RI (SRI) from the BRI. The obtained IRI can be directly applied in theoretical calculations to reliably reflect the experimental response and rigorously guide the design of plasmonic sensors. Moreover, it can be a fundamental dimensionless number to describe the light-matter interaction at the interface.


Asunto(s)
Refractometría , Resonancia por Plasmón de Superficie/métodos , Adsorción , Glicerol/análisis , Glicerol/química , Modelos Químicos
8.
Anal Bioanal Chem ; 412(29): 8051-8059, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33001243

RESUMEN

A simple but efficient colorimetric assay was developed for the detection and quantification of acid phosphatase (ACP) using a smartphone. This strategy is based on target-controlled iodine-mediated etching of gold nanorods (AuNRs). Due to effective hydrolysis of the substrate pyrophosphate (PPi) by ACP, chelated Cu2+ with PPi was released, which promoted the redox reaction with an iodide ion (I-), leading to the formation of I3-. As the etching agent of AuNRs, I3- caused a blueshift of the localized surface plasmon resonance peak and, more importantly, an observable color change. The vivid colors were recorded with a smartphone camera and directly analyzed using an image-processing app. On the basis of the direct correlation between ACP concentration and the etching degree of AuNRs as well as color change, this smartphone nanocolorimetry technique showed a good linear response toward ACP over the range of 0-15.0 U/L, with a detection limit of 0.97 U/L. Using the standard addition method, the practical applicability of the proposed smartphone-based assay was successfully demonstrated by determining ACP in human serum samples, with results consistent with those obtained by UV-Vis spectrophotometry.


Asunto(s)
Fosfatasa Ácida/sangre , Colorimetría/métodos , Oro/química , Yodo/química , Nanotubos/química , Teléfono Inteligente , Estudios de Factibilidad , Humanos , Límite de Detección , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta
9.
J Cell Mol Med ; 23(1): 126-142, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30421523

RESUMEN

The remodelling of structural and functional neurovascular unit (NVU) becomes a central therapeutic strategy after cerebral ischaemic stroke. In the present study, we investigated the effect of combined therapy of sodium ferulate (SF), n-butylidenephthalide (BP) and adipose-derived stromal cells (ADSCs) to ameliorate the injured NVU in the photochemically induced thrombotic stroke in rats. After solely or combined treatment, the neovascularization, activation of astrocytes, neurogenesis, expressions of vascular endothelial growth factor (VEGF) and claudin-5 were assessed by immunohistochemical or immunofluorescence staining. In order to uncover the underlying mechanism of therapeutic effect, signalling of protein kinase B/mammalian target of rapamycin (AKT/mTOR), extracellular signal-regulated kinase 1/2 (ERK1/2), and Notch1 in infarct zone were analysed by western blot. 18 F-2-deoxy-glucose/positron emission tomography, magnetic resonance imaging, Evans blue staining were employed to evaluate the glucose metabolism, cerebral blood flow (CBF), and brain-blood barrier (BBB) permeability, respectively. The results showed that combined treatment increased the neovascularization, neurogenesis, and VEGF secretion, modulated the astrocyte activation, enhanced the regional CBF, and glucose metabolism, as well as reduced BBB permeability and promoted claudin-5 expression, indicating the restoration of structure and function of NVU. The activation of ERK1/2 and Notch1 pathways and inhibition of AKT/mTOR pathway might be involved in the therapeutic mechanism. In summary, we have demonstrated that combined ADSCs with SF and BP, targeting the NVU remodelling, is a potential treatment for ischaemic stroke. These results may provide valuable information for developing future combined cellular and pharmacological therapeutic strategy for ischaemic stroke.


Asunto(s)
Ácidos Cumáricos/farmacología , Neurogénesis/efectos de los fármacos , Anhídridos Ftálicos/farmacología , Accidente Cerebrovascular/prevención & control , Células del Estroma/metabolismo , Tejido Adiposo/citología , Animales , Antiinflamatorios no Esteroideos/farmacología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Edema Encefálico/complicaciones , Células Cultivadas , Circulación Cerebrovascular/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Células del Estroma/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Plant Cell Physiol ; 60(7): 1581-1594, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31058993

RESUMEN

Lateral root (LR) formation and development play a vital role in plant development by permitting the establishment of branched root systems. It is well known that nutrient availability controls LR development. Moreover, LR development is fine-tuned by a myriad of hormonal signals. Many transcription factors (TFs) participate in LR development. Here, we discuss the TFs involved in the nitrate and auxin signaling pathways and how these function in the regulation of LR formation and development in chrysanthemum. AtTCP20 is a plant-specific TF, which can modulate LR development in response to nitrate. The roles of CmTCP20 in LR development were identified by overexpression in chrysanthemum and heterologous expression in Arabidopsis. Overexpression of CmTCP20 significantly increased the number and average length of LRs compared with the wild type in chrysanthemum and Arabidopsis. We also found that CmTCP20 positively influenced auxin accumulation in the LRs at least partly by improving auxin biosynthesis, transport and response, thereby promoting LR development. Moreover, we found that CmTCP20 interacts with an auxin response factor, CmARF8, which also can be induced by nitrate and combined to proximal sites in the upstream promoter region of CmCYCB1;1 to positively regulate the cell cycle. The CmTCP20-CmARF8 heterodimer links nitrate and auxin signaling and converts cell-cycle signals to regulate LR initiation and growth.


Asunto(s)
Chrysanthemum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis , Chrysanthemum/metabolismo , Chrysanthemum/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/metabolismo
11.
Anal Bioanal Chem ; 411(28): 7511-7518, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31641824

RESUMEN

A label-free, rapid response colorimetric aptasensor for sensitive detection of chloramphenicol (CAP) was proposed, which was based on the strategy of ssDNA-modified gold nanoparticle (AuNP) aggregation assisted by lanthanum (La3+) ions. The AuNPs generated a color change that could be monitored in the red, green, and blue and analyzed by the smartphone imaging app. La3+, as a trigger agent, strongly combined with the phosphate groups of the surface of ssDNA-AuNPs probe, which helps create AuNP aggregation and the color change of AuNPs from red to blue. On the contrary, when mixing with CAP, the aptamer (Apt) bound to CAP to form a rigid structure of the Apt-CAP complex, and La3+ attached to the phosphate groups of the complex, which prevented the aptamer from binding to the surface of the AuNPs. As a result, the color of the AuNPs changed to violet-red. Finally, UV-vis absorption spectroscopy and the smartphone imaging app were employed to determine CAP with a lower detection limit of 7.65 nM and 5.88 nM, respectively. The proposed strategy featuring high selectivity and strong anti-interference ability for detection of CAP in practical samples was achieved. It is worth mentioning that the simple and portable colorimetric aptasensor will be used for facilitating on-site detection of food samples.


Asunto(s)
Técnicas Biosensibles/métodos , Cloranfenicol/análisis , Colorimetría/instrumentación , Oro/química , Lantano/química , Nanopartículas del Metal/química , Teléfono Inteligente , Animales , Pollos , Inocuidad de los Alimentos , Leche/química , Productos Avícolas/análisis
12.
Acta Pharmacol Sin ; 40(4): 530-538, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29925919

RESUMEN

We have reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can act as an oncogenic transcriptional co-activator to modulate gene expression, promoting breast cancer development. Pyruvate kinase muscle isozyme M2 (PKM2), encoded by PKM gene, has emerged as a key oncoprotein in breast cancer. Yet, the regulatory mechanism of PKM2 is still unexplored. Here, we report that HBXIP can upregulate PKM2 to accelerate proliferation of estrogen receptor positive (ER+) breast cancer. Immunohistochemistry analysis using breast cancer tissue microarray uncovered a positive association between the expression of HBXIP and PKM2. We also discovered that PKM2 expression was positively related with HBXIP expression in clinical breast cancer patients by real-time PCR assay. Interestingly, in ER+ breast cancer cells, HBXIP was capable of upregulating PKM2 expression at mRNA and protein levels in a dose-dependent manner, as well as increasing the activity of PKM promoter. Mechanistically, HBXIP could stimulate PKM promoter through binding to the -779/-579 promoter region involving co-activation of E2F transcription factor 1 (E2F1). In function, cell viability, EdU, colony formation, and xenograft tumor growth assays showed that HBXIP contributed to accelerating cell proliferation through PKM2 in ER+ breast cancer. Collectively, we conclude that HBXIP induces PKM2 through transcription factor E2F1 to facilitate ER+ breast cancer cell proliferation. We provide new evidence for the mechanism of transcription regulation of PKM2 in promotion of breast cancer progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Estrógenos/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Unión a Hormona Tiroide
13.
Acta Pharmacol Sin ; 40(1): 122-132, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29925918

RESUMEN

Aspirin can efficiently inhibit liver cancer growth, but the mechanism is poorly understood. In this study, we report that aspirin modulates glucose uptake through downregulating glucose transporter 1 (GLUT1), leading to the inhibition of hepatoma cell proliferation. Our data showed that aspirin significantly decreased the levels of reactive oxygen species (ROS) and glucose consumption in hepatoma cells. Interestingly, we identified that GLUT1 and HIF1α could be decreased by aspirin. Mechanically, we demonstrated that the -1008/-780 region was the regulatory element of transcriptional factor NF-κB in GLUT1 promoter by luciferase report gene assays. PDTC, an inhibitor of NF-κB, could suppress the expression of GLUT1 in HepG2 and H7402 cells, followed by affecting the levels of ROS and glucose consumption. CoCl2-activated HIF1α expression could slightly rescue the GLUT1 expression inhibited by aspirin or PDTC, suggesting that aspirin depressed GLUT1 through targeting NF-κB or NF-κB/HIF1α signaling. Moreover, we found that GLUT1 was highly expressed in clinical HCC tissues relating to their paired adjacent normal tissues. Importantly, we observed that high level of GLUT1 was significantly correlated with the poor relapse-free survival of HCC patients by analysis of public data. Functionally, overexpression of GLUT1 blocked the PDTC-induced or aspirin-induced inhibition of glucose metabolism in HepG2 cells. Conversely, aspirin failed to work when GLUT1 was stably knocked down in the cells. Administration of aspirin could depress the growth of hepatoma cells through controlling GLUT1 in vitro and in vivo. Thus, our finding provides new insights into the mechanism by which aspirin depresses liver cancer.


Asunto(s)
Aspirina/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Carcinoma Hepatocelular/diagnóstico , Línea Celular Tumoral , Regulación hacia Abajo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/diagnóstico , Masculino , Ratones Endogámicos BALB C , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Mikrochim Acta ; 186(7): 467, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31240491

RESUMEN

A colorimetric assay is described for determination of cytosine-rich ssDNA at physiological pH values. The working principle is based on (a) Ag(I) ion-induced formation of an i-motif structure, and (b) glucose oxidase-controlled growth of gold nanoparticles (AuNPs). The combination between Ag+ and cytosine-rich DNA can modulate the generation of H2O2 resulting from enzyme catalyzed glucose oxidation. Depending on the amount of H2O2 formed, the solution containing the AuNPs will turn red in the presence of cytosine-rich ssDNA but blue in the absence of such DNA if Ag+ is added before the formation of the red AuNPs. Upon addition of C-DNA at different concentrations, the peak shift (Δλ) of the AuNP solution relative to the SPR peak position (560 nm) in the absence of C-DNA is taken as the signal readout. The method shows a good linear response toward C-DNA over the range 10-200 nM with a detection limit of 2.7 nM. It may also be performed visually. The photometric assay is highly sensitive, specific, and rapid. The method is particularly attractive in terms of applications such as in human serum analysis, a colorimetric logic gate, and the calculation of binding constants for the interaction between Ag+ and glucose oxidase (GOx), and between Ag+ and cytosine-rich ssDNAs. Graphical abstract Schematic presentation of colorimetric detection of cytosine (C)-rich ssDNA (C-DNA) based on the modulation of the glucose oxidase (GOx)-catalyzed growth of gold nanoparticles (AuNPs) with Ag+ as the enzyme inhibitor.


Asunto(s)
Citosina/química , ADN de Cadena Simple/sangre , Glucosa Oxidasa/química , Nanopartículas del Metal/química , Plata/química , Colorimetría/métodos , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Oro/química , Humanos , Peróxido de Hidrógeno/química , Límite de Detección , Conformación de Ácido Nucleico
15.
Angew Chem Int Ed Engl ; 58(27): 9188-9193, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31056811

RESUMEN

Upon heating, polyesters decompose to small molecules and release flammable volatiles and toxic gases, primarily through chain scission of their ester linkages, and therefore exhibit poor fire-safety properties, thus restricting their applications. Reported herein is an end-group-capturing effect of (bis)oxazoline groups, generated from the thermal rearrangement of the N-(2-hydroxyphenyl)phthalimide (HPI) moiety which was incorporated into the polyester chain by copolymerization. These copolyesters, as a result, exhibit high efficiency in retarding decomposition by capturing the decomposed products, particularly for the carbonyl-terminated fragments, thus increasing the fire-safety properties, such as self-extinguishing, anti-dripping, and inhibiting heat release and smoke production. The successful application of this method in both semi-aromatic and aliphatic polyesters provide promising perspectives to designing versatile fire-safe polymers.

16.
Int J Mol Sci ; 17(2): 190, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26861286

RESUMEN

The pathogenesis of Parkinson's disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it has not been illustrated in the brain. Thus, in this study, we aimed to understand the role of GLP-2 in microglia activation and to elucidate the underlying mechanisms. BV-2 cells were pretreated with GLP-2 and then stimulated by lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory enzymes (iNOS and COX-2) and pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α); the related signaling pathways were evaluated by Western blotting. The rescue effect of GLP-2 on microglia-mediated neurotoxicity was also examined. The results showed that GLP-2 significantly reduced LPS-induced production of inducible nitric oxide synthase (iNOS), cyclooxygenase-s (COX-2), IL-1ß, IL-6 and TNF-α. Blocking of Gαs by NF449 resulted in a loss of this anti-inflammatory effect in BV-2 cells. Analyses in signaling pathways demonstrated that GLP-2 reduced LPS-induced phosphorylation of ERK1/2, JNK1/2 and p65, while no effect was observed on p38 phosphorylation. In addition, GLP-2 could suppress microglia-mediated neurotoxicity. All results imply that GLP-2 inhibits LPS-induced microglia activation by collectively regulating ERK1/2, JNK1/2 and p65.


Asunto(s)
Péptido 2 Similar al Glucagón/metabolismo , Inflamación/metabolismo , Transducción de Señal , Animales , Línea Celular Transformada , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Expresión Génica , Péptido 2 Similar al Glucagón/farmacología , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas , Microglía/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos
17.
BMC Oral Health ; 16(1): 112, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27793138

RESUMEN

BACKGROUND: Malocclusion is a common disease of oral and maxillofacial region. The study was aimed to investigate levels changes of periodontal pathogens in malocclusion patients before, during and after orthodontic treatments, and to confirm the difference between adults and children. METHOD: One hundred and eight malocclusion patients (46 adults and 62 children at the school-age) were randomly selected and received orthodontic treatment with fixed orthodontic appliances. Subgingival plaques were Porphyromonas gingivalis (P.gingivalis), Fusobacterium nucleatum (F. nucleatum), Prevotella intermedia (P. intermedia) and Tannerella forsythensis (T. forsythensis) collected from the observed regions before and after treatment. Clinical indexes, including plaque index (PLI), gingival index (GI), sulcus bleeding index (SBI), probing depth (PD) and attachment loss (AL) of observed teeth were examined. RESULTS: The detection rates of P.gingivalis, F. nucleatum, P. intermedia and T. forsythensis increased from baseline to the third month without significant difference, and then returned to pretreatment levels 12 month after applying fixed orthodontic appliances. Adults' percentage contents of P.gingivalis, F. nucleatum, P. intermedia and T. forsythensis were significantly higher than those of children at baseline and the first month, but not obvious at the third month. PLI and SBI were increased from baseline to the first and to the third month both in adults and children groups. Besides, PD were increased from baseline to first month, followed by a downward trend in the third month; however, all patients were failed to detect with AL. CONCLUSIONS: Periodontal and microbiological statuses of malocclusion patients may be influenced by fixed orthodontic appliances in both adults and children, more significant in children than in adults. Some microbiological indexes have synchronous trend with the clinical indexes. Long-term efficacy of fixed orthodontic appliances for malocclusion should be confirmed by future researches.


Asunto(s)
Índice de Placa Dental , Placa Dental , Maloclusión/terapia , Aparatos Ortodóncicos , Adulto , Aggregatibacter actinomycetemcomitans , Niño , Humanos , Índice Periodontal , Porphyromonas gingivalis/aislamiento & purificación , Prevotella intermedia
18.
Opt Express ; 23(16): 20321-31, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367887

RESUMEN

Narrow-linewidth and low phase noise photonic microwave generation under sideband-injection locking are demonstrated using an 8-µm-radius AlGaInAs/InP microdisk laser subject to optical injection and optoelectronic feedback. Microdisk laser subject to external optical injection at the period-one state provides the microwave subcarrier seed signal, and the optoelectronic feedback serves as direct current modulation to stabilize and lock the generated microwave signal without using the electrical filter. High-quality photonic microwave signals are realized with the 3-dB linewidth of less than 1 kHz and the frequency tunable range from 8.8 to 17 GHz. Single sideband phase noise of -101 dBc/Hz is obtained at a frequency offset of 10 kHz for the generated 14.7 GHz signal. Furthermore, the dependences of photonic microwave signal on the optical injection and optoelectronic feedback parameters are investigated.

19.
Opt Express ; 23(3): 2879-88, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836149

RESUMEN

Thermal and high speed modulation characteristics are investigated for a unidirectional-emission microdisk laser with a radius of 7 µm surrounded by BCB-cladding layer, with a threshold current of 1.5 mA at the temperature of 287 K. The lasing spectra under different widths of pulsed current are measured to characterize the temperature rise during the pulse period, and the thermal distribution in the microdisk laser is simulated by the finite-element modeling technique. A temperature rise of 25 K is estimated for the microdisk laser biased at 20 mA. Furthermore, small signal modulation response with 3dB bandwidth up to 20 GHz is obtained for the microdisk laser at the biasing current of 18 mA, and eye-diagrams at the modulation bit rates of 20, 25, and 30 GHz are also measured at the temperature of 287 K.

20.
Opt Lett ; 40(15): 3548-51, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258354

RESUMEN

A dual-transverse-mode microsquare laser with a tunable wavelength interval is designed and realized by using a square-ring-patterned contact window. For a 30-µm-side-length microsquare laser with the square-ring width of 4 µm, the wavelength interval varies from 0.25 to 0.37 nm with the intensity ratio less than 2.5 dB as the injection current increases from 89 to 108 mA. Based on the dual-transverse-mode microsquare laser, the microwave signals with the frequencies of 30.56, 32.70, 35.12, and 39.51 GHz and the 3-dB bandwidths of 47, 53, 54, and 47 MHz are obtained at the injection currents of 90, 95, 100, and 105 mA, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA