Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315820

RESUMEN

Senescence is an important biological process, which leads to the gradual degradation of its physiological function and increases morbidity and mortality. Herein, a novel ratiometric fluorescent probe (P1) was constructed by using benzothiazolyl acetonitrile dye as fluorophore, exhibiting significantly enhanced blue-shifted emission to indicate the activity of ß-galactosidase (ß-gal), a commonly used biomarker for the detection of senescent cells. After incubation with ß-gal, the excimer emission of P1 at 620 nm was weakened, while the emission at 533 nm was significantly enhanced, forming an obvious ratiometric probe with high sensitivity and low detection limit (2.7 mU·mL-1). More importantly, probe P1 can locate lysosomes accurately, allowing us to monitor the emergence of living cell senescence in real time. P1 was successfully used to detect ß-gal activity in PC-12 cells, Hep G2 cells, and RAW 264.7 cells. It showed strong green fluorescence signal in senescent cells and red fluorescence signal in normal cells, indicating that it can detect endogenous senescence-related ß-gal content in living cells. For in vivo drug-induced senescence imaging, after 5 weeks of injection of D-galactose or hydroxyurea, the mice showed significant fluorescence enhancement in specific channels to indicate the activity of ß-gal in vivo. At the same time, the senescence of cell-specific organs and skin tissues at the organ level were also detected, which proved that the drug-induced senescence of brain, skin, and muscle tissues was the most serious. These results supported the important application value of P1 in senescence biomedical research.

2.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532611

RESUMEN

Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.

3.
J Sci Food Agric ; 104(3): 1804-1812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37867464

RESUMEN

BACKGROUND: The use of rutin in the food industry is limited by its poor solubility. Encapsulation can be used as an effective way to improve polyphenol solubility. Proteins with high safety, biocompatibility and multiple binding sites are known as the most promising encapsulating carriers. Therefore, the improvement of rutin solubility by pH-driven encapsulation of rutin in soy protein isolate (SPI) nanoparticles, as well as the form of rutin after encapsulation and rutin-protein binding index were investigated. RESULTS: SPI had a high encapsulation efficiency (87.5%) and loading amount (10.6%) for rutin. When the mass ratio of protein to rutin was 5:1, the highest concentration of rutin in solution was 3.27 g L-1 , which was a 51.57-fold increase compared to the original rutin. At this situation, rutin transformed from crystalline to amorphous form. During the formation of nanoparticles, SPI was in a dynamic change of unfolding and refolding. Rutin deprotonated in alkaline conditions increasing its solubility and bound to protein to form nanoparticles during the process of returning to neutral. Hydrophobic interactions and hydrogen bonding promoted the formation of the nanoparticles and there were at least 1-2 binding sites between rutin and each SPI molecule. CONCLUSION: The results suggested that encapsulation of rutin in protein nanoparticles can effectively increase the solubility of rutin. This study may provide important information for the effective utilization of polyphenol functional foods. © 2023 Society of Chemical Industry.


Asunto(s)
Nanopartículas , Rutina , Solubilidad , Proteínas de Soja/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Polifenoles
4.
J Sci Food Agric ; 104(4): 1971-1983, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897157

RESUMEN

BACKGROUND: Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS: Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS: The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.


Asunto(s)
Gliadina , Nanopartículas , Emulsiones/química , Gliadina/química , Tamaño de la Partícula , Nanopartículas/química , Suplementos Dietéticos , Agua/química , Concentración de Iones de Hidrógeno
5.
Crit Rev Food Sci Nutr ; 63(31): 10637-10658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35687361

RESUMEN

Flavonoids are important active ingredients in plant-based food, which have many beneficial effects on health. But the low solubility, poor oral bioavailability, and inferior stability of many flavonoids may limit their applications in the food, cosmetics, and pharmaceutical industries. Structural modification can overcome these shortcomings to improve and extend the application of flavonoids. The study of how to modify flavonoids and the influence of various modifications on biological activity have drawn great interest in the current literature. In this review, the working principles and operating conditions of modification methods were summarized along with their potential and limitations in terms of operational safety, cost, and productivity. The influence of various modifications on biological activities and the structure-activity relationships of flavonoids derivatives were discussed and highlighted, which may give guidance for the synthesis of highly effective active agents. In addition, the safety of flavonoids derivatives is reviewed, and future research directions of flavonoid modification research are discussed.


Asunto(s)
Flavonoides , Alimentos , Flavonoides/farmacología , Flavonoides/química , Relación Estructura-Actividad , Disponibilidad Biológica , Solubilidad
6.
Crit Rev Food Sci Nutr ; 63(32): 11385-11398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35730204

RESUMEN

Carotenoids, polyphenols, and minerals (CPMs) are representative bioactive compounds and micronutrients in plant-based foods, showing many potentially positive bioactivities. Bioaccessibility is a prerequisite for bioactivities of CPMs. Cell wall polysaccharides (CWPs) are major structural components of plant cell wall, and they have been proven to affect the bioaccessibility of CPMs in different ways. This review summarizes recent literatures about the effects of CWPs on the bioaccessibility of CPMs and discusses the potential mechanisms. Based on the current findings, CWPs can inhibit the bioaccessibility of CPMs in gastrointestinal tract. The effects of CWPs on the bioaccessibility of polyphenols and minerals mainly attributes to bind between them, while CWPs affect the bioaccessibility of carotenoids by changing the digestive environment. Further, this review overviews the factors (environmental conditions, CWPs properties and CPMs characteristics) affecting the interactions between CWPs and CWPs. This review may help to better design healthy and nutritious foods precisely.


Asunto(s)
Carotenoides , Polifenoles , Carotenoides/análisis , Polifenoles/análisis , Minerales/metabolismo , Polisacáridos/análisis , Pared Celular/química
7.
J Sci Food Agric ; 103(1): 83-91, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792714

RESUMEN

BACKGROUND: Worldwide, fried food has a huge demand and good development prospects. Low oil in foods is the standard that everyone is now pursuing for a healthy diet. RESULTS: The oil absorption behavior of rice starch during frying was investigated in the presence or absence of fatty acids or fatty acid esters with different carbon chain lengths. The complex formed between starch and fatty acids or fatty acid esters was dependent on lipid chain length, which was confirmed by X-ray diffraction and complexing index. The formation of starch-lipid complexes could significantly reduce the oil absorption of starch, and the complexes with higher complexing index had lower oil absorption. The starch-palmitic acid complex showed the lowest oil absorption after frying, which was 14.06 g per 100 g lower than that of gelatinized starch. This was attributed to the ability of the palmitic acid to increase the density of starch crystalline polymorphs as well as their ability to complex with the amylose spiral cavity. CONCLUSION: These results may be useful for development of healthier fried starch-based foods with reduced oil contents. © 2022 Society of Chemical Industry.


Asunto(s)
Amilosa , Almidón , Almidón/química , Amilosa/química , Ácidos Grasos/química , Ácidos Palmíticos , Ésteres
8.
J Sci Food Agric ; 103(2): 770-778, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36053972

RESUMEN

BACKGROUND: Rutin is a natural bioactive flavonoid that is poor in water solubility and chemical stability. Encapsulation can be used to protect bioactive molecules from chemical or physical decomposition during food processing and storage. Thus, the effect of initial particle size on the ability of oil-in-water emulsions to retain rutin during storage was investigated. RESULTS: Rutin was encapsulated in oil-in-water emulsions with different mean surface-weighted diameters: d3,2  = 0.56 µm (small), 0.73 µm (medium), and 2.32 µm (large). As expected, the resistance of the emulsions to coalescence and creaming during storage increased as the particle size decreased due to weakening of the colloidal and gravitational forces acting on the droplets. The concentration of rutin in the emulsions decreased during storage (28 days), which was mainly attributed to photodegradation of the flavonoid. The loss of rutin from the emulsions during storage was fitted using a second-order equation. The rutin degradation rate constant k decreased and the half-life t1/2 increased with decreasing droplet size, which was attributed to the stronger encapsulation and light scattering by smaller oil droplets reducing the amount of light that can penetrate into the emulsions. CONCLUSION: This study has important implications for the design of more efficacious emulsion-based delivery systems for incorporating health-promoting nutraceuticals into foods. © 2022 Society of Chemical Industry.


Asunto(s)
Flavonoides , Rutina , Emulsiones/química , Tamaño de la Partícula , Cinética , Agua/química
9.
Plant Foods Hum Nutr ; 78(1): 76-85, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36327062

RESUMEN

Jackfruit is one of the major tropical fruits, but information on the phytochemicals and biological benefits of its pulp is limited. In this study, the phytochemicals and biological activities including antioxidant, antitumor and anti-inflammatory activities of five jackfruit pulp cultivars (M1, M2, M3, M7 and T5) were comparatively investigated. A total of 11 compounds were identified in all cultivars of jackfruit pulp, among which 4-hydroxybenzoic acid, caffeic acid, ferulic acid and tryptophan N-glucoside were reported for the first time in jackfruit. T5 exhibited the highest total phenolic content (7.69 ± 0.73 mg GAE/g DW), antioxidant capacity (109.8, 96.7 and 207 mg VCE/g DW for DPPH, ABTS and FRAP, respectively), antitumor activity (80.31%) and anti-inflammatory activity (78.44%) among five cultivars. These results can provide a reference for growers to choose jackfruit cultivar and offer an insight into the industrial application of jackfruit pulp derived-products.


Asunto(s)
Artocarpus , Artocarpus/química , Antioxidantes/química , Extractos Vegetales/química , Fitoquímicos/química , Fenoles
10.
Mar Drugs ; 20(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35049933

RESUMEN

Puniceusines A-N (1-14), 14 new isoquinoline alkaloids, were isolated from the extracts of a deep-sea-derived fungus, Aspergillus puniceus SCSIO z021. Their structures were elucidated by spectroscopic analyses. The absolute configuration of 9 was determined by ECD calculations, and the structures of 6 and 12 were further confirmed by a single-crystal X-ray diffraction analysis. Compounds 3-5 and 8-13 unprecedentedly contained an isoquinolinyl, a polysubstituted benzyl or a pyronyl at position C-7 of isoquinoline nucleus. Compounds 3 and 4 showed selective inhibitory activity against protein tyrosine phosphatase CD45 with IC50 values of 8.4 and 5.6 µM, respectively, 4 also had a moderate cytotoxicity towards human lung adenocarcinoma cell line H1975 with an IC50 value of 11.0 µM, and 14, which contained an active center, -C=N+, exhibited antibacterial activity. An analysis of the relationship between the structures, enzyme inhibitory activity and cytotoxicity of 1-14 revealed that the substituents at C-7 of the isoquinoline nucleus could greatly affect their bioactivity.


Asunto(s)
Alcaloides/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Aspergillus , Isoquinolinas/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Alcaloides/química , Animales , Antibacterianos/química , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Isoquinolinas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
11.
J Sci Food Agric ; 101(11): 4760-4767, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33502770

RESUMEN

BACKGROUND: Proanthocyanidins (PAS) were complexed with potato starch (PS) to prepare polyphenol-starch complexes. The pasting, rheological and retrogradation properties of the complexes were investigated. RESULTS: The addition of PAS markedly affected the pasting, rheological and retrogradation properties of PS, especially at a concentration of 5% (w/w). Rapid viscosity analysis indicated that PAS significantly changed the viscosity, breakdown and setback value of PS. The rheological results showed that PAS decreased the flow behavior index and consistency coefficient, but increased the viscoelasticity of PS. Differential scanning calorimetry and X-ray diffraction indicated that PAS delayed the retrogradation of PS. Furthermore, scanning electron microscopy indicated that the morphologies of retrograded PS gels were greatly altered to a less compact structure with the presence of PAS. Moreover, Fourier transform infrared spectroscopy elucidated that PAS interacted with PS via a noncovalent interaction, and inhibited the retrogradation of PS. CONCLUSIONS: The findings suggested that supplementing PS with PAS might be an effective and convenient method for modifying the physicochemical properties of PS. © 2021 Society of Chemical Industry.


Asunto(s)
Extractos Vegetales/química , Proantocianidinas/química , Solanum tuberosum/química , Almidón/química , Rastreo Diferencial de Calorimetría , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad , Difracción de Rayos X
12.
J Sci Food Agric ; 101(15): 6525-6532, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34002396

RESUMEN

BACKGROUND: Chinese te-flavor baijiu (CTF), the most famous Chinese baijiu in Jiangxi province, China, is made from a unique daqu. Its characteristic style is closely related to the daqu used for fermentation. However, current studies on the effects of different production seasons on microbial communities, physicochemical indices, and volatile compounds in CTF daqu are very rare. RESULTS: The relationships of microbial communities, physicochemical indices, and volatile compounds in CTF daqu produced in summer (July and August) and autumn (September and October) were studied. The results of Illumina MiSeq sequencing indicated that there was greater bacterial diversity in the CTF daqu-7 (produced in July) and CTF daqu-8 (produced in August) and greater fungal diversity in the CTF daqu-9 (produced in September) and CTF daqu-10 (produced in October). The physicochemical indices of CTF daqu produced in different seasons were significantly different. It was determined that CTF daqu-9 had the highest esterification and liquefaction abilities. A total of 44 volatile compounds, including alcohols, esters, aldehydes, and ketones were identified in CTF daqu produced during different seasons. Among them, CTF daqu-9 had the greatest alcohol content. CONCLUSION: September (early autumn) is the best production period for CTF daqu. The results of the study provide a theoretical basis for the standardized and uniform production of Chinese baijiu. © 2021 Society of Chemical Industry.


Asunto(s)
Bacterias/aislamiento & purificación , Aromatizantes/química , Hongos/aislamiento & purificación , Microbiota , Compuestos Orgánicos Volátiles/química , Vino/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , China , Fermentación , Aromatizantes/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Humanos , Estaciones del Año , Gusto , Compuestos Orgánicos Volátiles/metabolismo , Vino/análisis
13.
Crit Rev Food Sci Nutr ; 60(21): 3594-3621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31858810

RESUMEN

Organic acids are widely utilized in the food industry for inhibiting the activity of polyphenol oxidase (PPO) and enzymatic browning. This review discusses the mechanisms of inhibition of PPO and enzymatic browning by various organic acids based on studies in model systems, critically evaluates the relevance of such studies to real food systems and assesses the implication of the synergistic inhibitory effects of organic acids with other physicochemical processing techniques on product quality and safety. Organic acids inhibit the activity of PPO and enzymatic browning via different mechanisms and therefore the suitability of a particular organic acid depends on the structure and the catalytic properties of PPO and the physicochemical properties of the food matrix. Studies in model systems provide an invaluable insight into the inhibitory mechanisms of various organics acids. However, the difference in the effectiveness of PPO inhibitors between model systems and food systems and the lack of correlation between the degree of PPO inhibition based on in vitro assays and enzymatic browning imply that the effectiveness of organic acids can be accurately evaluated only via direct assessment of browning inhibition in a particular food system. Combination of organic acids with physical processing techniques is one of the most viable approaches for PPO inhibition since the observed synergistic effect helps to reduce the undesirable organoleptic quality changes from the use of excessive concentration of organic acids or intense physical processing.


Asunto(s)
Catecol Oxidasa , Compuestos Orgánicos
14.
J Microencapsul ; 37(3): 220-229, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32039640

RESUMEN

Aim: A novel folated pluronic F127 (FA-F127) was synthesised, so as to modify liposomes with FA group on the surface, and evaluate the effects of FA-F127 modification on the properties of the modified liposomes.Methods: FA was linked to one end of pluronic F127, via the terminal OH group, to obtain FA-F127 and the structure was characterised. FA-F127 modified curcumin liposomes (cur-FA-F127-Lps) were prepared. The physicochemical characteristics of cur-FA-F127-Lps, including morphology and particle size, were studied. The in vitro cytotoxicity of cur-FA-F127-Lps against KB cancer cells was determined by MTT tests.Results: The effects of FA-F127 modification on the average particle size, PDI, curcumin encapsulation efficiency and microstructure were not significant. Compared with nonfolated F127 liposomes (cur-F127-Lps), cur-FA-F127-Lps exhibited significantly higher cytotoxicity towards KB cells.Conclusions: Folic acid modified liposomes provide a novel strategy to improve the chemotherapeutic efficacy of hydrophobic bioactive compounds.


Asunto(s)
Curcumina , Citotoxinas , Neoplasias/tratamiento farmacológico , Poloxámero , Línea Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacología , Humanos , Liposomas , Neoplasias/metabolismo , Neoplasias/patología , Poloxámero/análogos & derivados , Poloxámero/química , Poloxámero/farmacocinética , Poloxámero/farmacología
15.
Prep Biochem Biotechnol ; 50(7): 697-707, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32108551

RESUMEN

Although tea seed cake (TSC) possesses high nutritional value, its high content of tea saponin (TS) limits its potential as feed. This study aimed to degrade TS in TSC by saponin-degrading strain and used a multistrains fermentation method to improve its nutritional value and palatability. Three saponin-degrading strains were isolated from Oleum Camelliae mill soil and identified as Citrobacter sp. FCTS301, Pantoea sp. FCTS302, and Enterobacter sp. FCTS303. Single-factor experiment showed that Citrobacter sp. FCTS301 had the highest degradation rate of TS. Response surface analysis for Citrobacter sp. FCTS301 indicated that the optimum culture conditions were as follows: initial pH of 7.2, culture temperature of 34.2 °C, inoculation amount of 7.3%, the agitation rate of 150 rpm, and the TS concentration of 10.0 g/L. Under these conditions, the maximum degradation rate was 82.6%. The fermentation process of TSC was obtained by a multistrains fermentation experiment. Considering the protein content, crude fiber degradation rate, and TS degradation rate of each group, the optimum inoculum amount of strains included Citrobacter sp. FCTS301, Aspergillus oryzae NCUF414, Saccharomyces cersvisiae NCUF306.5, and Lactobacillus plantarum NCUF201.1(5%, 0.5%, 1.0%, and 1.5%). After TS was degraded efficiently, fermented TSC can be presumed a potential feed raw material.


Asunto(s)
Citrobacter/metabolismo , Enterobacter/metabolismo , Microbiología Industrial/métodos , Pantoea/metabolismo , Saponinas/química , Té/química , Aspergillus oryzae , ADN Ribosómico/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Lactobacillus plantarum , Filogenia , Saccharomyces cerevisiae , Temperatura
16.
Molecules ; 25(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932691

RESUMEN

ß-carotene is a promising natural active ingredient for optimum human health. However, the insolubility in water, low oral bioavailability, and instability in oxygen, heat, and light are key factors to limit its application as incorporation into functional foods. Therefore, gliadin nanoparticles (GNPs) Pickering emulgels were chosen as food-grade ß-carotene delivery systems. The objectives of the present study were to investigate the influence of GNPs concentration on the rheological properties, stability, and simulated gastrointestinal fate of ß-carotene of Pickering emulgels. The formulations of Pickering emulgels at low GNPs concentration had better fluidity, whereas at high GNPs concentration, they had stronger gel structures. Furthermore, the thermal stability of ß-carotene loaded in Pickering emulgels after two pasteurization treatments was significantly improved with the increase of GNPs concentration. The Pickering emulgels stabilized with higher GNPs concentration could improve the protection and bioaccessibility of ß-carotene after different storage conditions. This study demonstrated the tremendous potential of GNPs Pickering emulgels to carry ß-carotene.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tracto Gastrointestinal/efectos de los fármacos , Gliadina/química , Nanopartículas/química , beta Caroteno/química , Disponibilidad Biológica , Composición de Medicamentos , Emulsiones/química , Calor , Humanos , Intestino Delgado/efectos de los fármacos , Luz , Microscopía Confocal , Nanotecnología , Oxígeno , Tamaño de la Partícula , Reología , Viscosidad , Agua/química , beta Caroteno/administración & dosificación
17.
J Food Sci Technol ; 57(3): 886-894, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32123409

RESUMEN

It is an interesting topic to elucidate the interaction among plant proteins and bioactive lipid components. However, there is a shortage of understanding regarding the nature of the interaction between rice protein and conjugated linoleic acid (CLA). In this study, the intrinsic fluorescence intensity of rice glutelin (RG) was quenched upon increasing concentrations of CLA, indicating the occurrence of an interaction between them. Thermodynamic analysis showed that the RG-CLA binding process occurred spontaneously and hydrogen bonds were the primary driving force. Moreover, only one binding site was calculated between RG and CLA by the intrinsic fluorescence data. The surface hydrophobicity of RG was reduced with increasing CLA. Circular dichroism and synchronous fluorescence spectroscopy showed conformational and microenvironmental changes around the chromophores of RG. The α-helical content increased and ß-sheet content declined after the binding reaction. The computational docking program displayed the target site in which CLA and amino acid residues of RG might be linked together. This study provides valuable insights into the nature of the interactions between plant proteins and fatty acids.

18.
J Dairy Sci ; 102(1): 145-154, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343918

RESUMEN

Some food components can modulate the antigenicity of ß-lactoglobulin (ß-LG). This study investigated the role of oleic acid (OA) in reducing the antigenicity of ß-LG. The results indicate the antigenicity of ß-LG gradually decreased from 15 (sample with no OA) to 9.86, 7.51, and 6.01 µg/mL when interacting with OA during dynamic high-pressure microfluidization treatment at 0.1, 80, and 160 MPa. Although binding sites (n) of ß-LG combined with OA at 0.1, 80, and 160 MPa decreased from 0.79 to 0.5 and 0.66, ß-LG had a higher binding affinity (Ka) to OA than that of untreated ß-LG. The values of Ka for ß-LG/OA at 0.1, 80, and 160 MPa were 5.51 × 106, 17.43 × 106, and 49.75 × 106M-1, respectively. The molecule dynamic simulation showed that the OA molecules located at both ß-barrel (site 1) interacted with Lys60, Glu62, and Lys69 and outer surface site 2 consisting of Tyr20, Tyr42, Ser21, Glu157, and His161. Additionally, when binding with OA during the dynamic high-pressure microfluidization treatment, the conformation of ß-LG changed, reflected by the decrease of fluorescence intensity and total sulfhydryl group content, the increase of surface sulfhydryl group content, and secondary structure changes of ß-LG. These results deduce that some epitopes may be masked by OA or modified by the conformational changes, resulting in the decline of antigenicity of ß-LG molecules.


Asunto(s)
Antígenos/química , Lactoglobulinas/química , Lactoglobulinas/inmunología , Simulación de Dinámica Molecular , Ácido Oléico/química , Análisis Espectral/métodos , Animales , Antígenos/inmunología , Hipersensibilidad a la Leche/prevención & control , Estructura Secundaria de Proteína
19.
Molecules ; 23(2)2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-29439533

RESUMEN

Some molecular and functional properties of albumin (83.6% protein), globulin (95.5% protein), glutelin (81.3% protein) as well as protein isolate (80.7% protein) from cashew nut were investigated. These proteins were subjected to molecular (circular dichroism, gel electrophoresis, scanning electron microscopy) and functional (solubility, emulsification, foaming, water/oil holding capacity) tests. Cashew nut proteins represent an abundant nutrient with well-balanced amino acid composition and could meet the requirements recommended by FAO/WHO. SDS-PAGE pattern indicated cashew nut proteins were mainly composed of a polypeptide with molecular weight (MW) of 53 kDa, which presented two bands with MW of 32 and 21 kDa under reducing conditions. The far-UV CD spectra indicated that cashew proteins were rich in ß-sheets. The surface hydrophobicity of the protein isolate was higher than that of the protein fractions. In pH 7.0, the solubility of protein fractions was above 70%, which was higher than protein isolate at any pH. Glutelin had the highest water/oil holding capacity and foaming properties. Protein isolate displayed better emulsifying properties than protein fractions. In summary, cashew nut kernel proteins have potential as valuable nutrition sources and could be used effectively in the food industry.


Asunto(s)
Albúminas/química , Anacardium/química , Proteínas en la Dieta/química , Globulinas/química , Glútenes/química , Nueces/química , Proteínas de Plantas/química , Albúminas/aislamiento & purificación , Proteínas en la Dieta/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Análisis de los Alimentos , Globulinas/aislamiento & purificación , Glútenes/aislamiento & purificación , Concentración de Iones de Hidrógeno , Peso Molecular , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica en Lámina beta , Solubilidad
20.
Crit Rev Food Sci Nutr ; 57(6): 1228-1238, 2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26054762

RESUMEN

Probiotic bacteria are being increasingly added to food for developing products with health-promoting properties. However, the efficacy of probiotics in commercial products is often questioned due to the loss of their viability during shelf storage and in human gastrointestinal tracts. Encapsulation of probiotics has been expected to provide protection to probiotics, but not many commercial products contain encapsulated and viable probiotic cells owing to various reasons. To promote the development and application of encapsulation technologies, this paper has critically reviewed previous publications with a focus on the areas where studies have fallen short, including insufficient consideration of structural effects of encapsulating material, general defects in encapsulating methods and issues in evaluation methodologies and risk assessments for application. Corresponding key issues that require further studies are highlighted. Some emerging trends in the field, such as current treads in encapsulating material and recently advanced encapsulation techniques, have also been discussed.


Asunto(s)
Bacterias , Composición de Medicamentos/métodos , Probióticos , Células Inmovilizadas , Suplementos Dietéticos , Manipulación de Alimentos , Microbiología de Alimentos , Inocuidad de los Alimentos , Almacenamiento de Alimentos , Humanos , Viabilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA