RESUMEN
SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.
Asunto(s)
Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Dominios Proteicos , Células HEK293 , COVID-19/metabolismo , COVID-19/virología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/química , Interacciones Huésped-PatógenoRESUMEN
The glutamatergic-mediated excitatory system in the brain is vital for the regulation of sleep-wake and general anesthesia. Specifically, the paraventricular hypothalamic nucleus (PVH), which contains mainly glutamatergic neurons, has been shown to play a critical role in sleep-wake. Here, we sought to explore whether the PVH glutamatergic neurons have an important effect on the process of general anesthesia. We used c-fos staining and in vivo calcium signal recording to observe the activity changes of the PVH glutamatergic neurons during isoflurane anesthesia and found that both c-fos expression in the PVH and the calcium activity of PVH glutamatergic neurons decreased in isoflurane anesthesia and significantly increased during the recovery process. Chemogenetic activation of PVH glutamatergic neurons prolonged induction time and shortened emergence time from anesthesia by decreasing the depth of anesthesia. Using chemogenetic inhibition of PVH glutamatergic neurons under isoflurane anesthesia, we found that inhibition of PVH glutamatergic neurons facilitated the induction process and delayed the emergence accompanied by deepening the depth of anesthesia. Together, these results identify a crucial role for PVH glutamatergic neurons in modulating isoflurane anesthesia.
Asunto(s)
Isoflurano , Ratones , Animales , Isoflurano/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Anestesia GeneralRESUMEN
The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.
Asunto(s)
Anestésicos por Inhalación , Neuronas GABAérgicas , Isoflurano , Zona Incerta , Animales , Isoflurano/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Zona Incerta/efectos de los fármacos , Zona Incerta/metabolismo , Anestésicos por Inhalación/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Periodo de Recuperación de la AnestesiaRESUMEN
The giant panda, a strict herbivore that feeds on bamboo, still retains a typical carnivorous digestive system. Reference catalogs of microbial genes and genomes are lacking, largely limiting the antibiotic resistome and functional exploration of the giant panda gut microbiome. Here, we integrated 177 fecal metagenomes of captive and wild giant pandas to construct a giant panda integrated gene catalog (GPIGC) comprised of approximately 4.5 million non-redundant genes and reconstruct 393 metagenome-assembled genomes (MAGs). Taxonomic and functional characterization of genes revealed that the captivity of the giant panda significantly changed the core microbial composition and the distribution of microbial genes. Higher abundance and prevalence of antibiotic resistance genes (ARGs) were detected in the guts of captive giant pandas, and ARG distribution was influenced by geography, for both captive and wild individuals. Escherichia, as the prevalent genus in the guts of captive giant pandas, was the main carrier of ARGs, meaning there is a high risk of ARG transmission by Escherichia. We also found that multiple mcr gene variants, conferring plasmid-mediated mobile colistin resistance, were widespread in the guts of captive and wild giant pandas. There were low proportions of carbohydrate-active enzyme (CAZyme) genes in GPIGC and MAGs compared with several omnivorous and herbivorous mammals. Many members of Clostridium MAGs were significantly enriched in the guts of adult, old and wild giant pandas. The genomes of isolates and MAGs of Clostridiaceae harbored key genes or enzymes in complete pathways for degrading lignocellulose and producing short-chain fatty acids (SCFAs), indicating the potential of these bacteria to utilize the low-nutrient bamboo diet. Overall, our data presented an exhaustive reference gene catalog and MAGs in giant panda gut and provided a comprehensive understanding of the antibiotic resistome and microbial adaptability for a high-lignocellulose diet.
Asunto(s)
Microbioma Gastrointestinal , Lignina , Ursidae , Humanos , Animales , Metagenoma , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología , Dieta/veterinariaRESUMEN
BACKGROUND: Excessive extracellular matrix deposition and increased stiffness are typical features of solid tumors such as hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC). These conditions create confined spaces for tumor cell migration and metastasis. The regulatory mechanism of confined migration remains unclear. METHODS: LC-MS was applied to determine the differentially expressed proteins between HCC tissues and corresponding adjacent tissue. Collective migration and single cell migration microfluidic devices with 6 µm-high confined channels were designed and fabricated to mimic the in vivo confined space. 3D invasion assay was created by Matrigel and Collagen I mixture treat to adherent cells. 3D spheroid formation under various stiffness environment was developed by different substitution percentage GelMA. Immunoprecipitation was performed to pull down the LH1-binding proteins, which were identified by LC-MS. Immunofluorescent staining, FRET, RT-PCR, Western blotting, FRAP, CCK-8, transwell cell migration, wound healing, orthotopic liver injection mouse model and in vivo imaging were used to evaluate the target expression and cellular phenotype. RESULTS: Lysyl hydroxylase 1 (LH1) promoted the confined migration of cancer cells at both collective and single cell levels. In addition, LH1 enhanced cell invasion in a 3D biomimetic model and spheroid formation in stiffer environments. High LH1 expression correlated with poor prognosis of both HCC and PDAC patients, while it also promoted in vivo metastasis. Mechanistically, LH1 bound and stabilized Septin2 (SEPT2) to enhance actin polymerization, depending on the hydroxylase domain. Finally, the subpopulation with high expression of both LH1 and SEPT2 had the poorest prognosis. CONCLUSIONS: LH1 promotes the confined migration and metastasis of cancer cells by stabilizing SEPT2 and thus facilitating actin polymerization.
Asunto(s)
Carcinoma Hepatocelular , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Ratones , Actinas , Carcinoma Hepatocelular/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , SeptinasRESUMEN
As a ubiquitous bacterial secondary messenger, c-di-GMP plays key regulatory roles in processes such as bacterial motility and transcription regulation. CobB is the Sir2 family protein deacetylase that controls energy metabolism, chemotaxis, and DNA supercoiling in many bacteria. Using an Escherichia coli proteome microarray, we found that c-di-GMP strongly binds to CobB. Further, protein deacetylation assays showed that c-di-GMP inhibits the activity of CobB and thereby modulates the biogenesis of acetyl-CoA. Interestingly, we also found that one of the key enzymes directly involved in c-di-GMP production, DgcZ, is a substrate of CobB. Deacetylation of DgcZ by CobB enhances its activity and thus the production of c-di-GMP. Our work establishes a novel negative feedback loop linking c-di-GMP biogenesis and CobB-mediated protein deacetylation.
Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Sirtuinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , GMP Cíclico/metabolismo , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Sistemas de Mensajero SecundarioRESUMEN
BACKGROUND: The purpose of this study was to study the effect of STING-IFN-I pathway on incision induced postoperative pain in rats and its possible mechanisms. METHODS: The pain thresholds were evaluated by measuring the mechanical withdrawal threshold and the thermal withdrawal latency. The satellite glial cell and macrophage of DRG were analyzed. The expression of STING, IFN-a, P-P65, iNOS, TNF-α, IL-1ß and IL-6 in DRG was evaluated. RESULTS: The activation of STING-IFN-I pathway can reduce the mechanical hyperalgesia, thermal hyperalgesia, down-regulate the expression of P-P65, iNOS, TNF-α, IL-1ß and IL-6, and inhibit the activation of satellite glial cell and macrophage in DRG. CONCLUSIONS: The activation of STING-IFN-I pathway can alleviate incision induced acute postoperative pain by inhibiting the activation of satellite glial cell and macrophage, which reducing the corresponding neuroinflammation in DRG.
Asunto(s)
Ganglios Espinales , Factor de Necrosis Tumoral alfa , Ratas , Animales , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Hiperalgesia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismoRESUMEN
BACKGROUND: The noradrenergic neurons of locus coeruleus (LC) project to the spinal dorsal horn (SDH), and release norepinephrine (NE) to inhibit pain transmission. However, its effect on pathological pain and the cellular mechanism in the SDH remains unclear. This study aimed to explore the analgesic effects and the anti-neuroinflammation mechanism of LC-spinal cord noradrenergic pathway (LC:SC) in neuropathic pain (NP) mice with sciatic chronic constriction injury. METHODS: The Designer Receptors Exclusively Activated by Designer Drugs (DREADD) was used to selectively activate LC:SC. Noradrenergic neuron-specific retro-adeno-associated virus was injected to the spinal cord. Pain threshold, LC and wide dynamic range (WDR) neuron firing, neuroinflammation (microglia and astrocyte activation, cytokine expression), and α2AR expression in SDH were evaluated. RESULTS: Activation of LC:SC with DREADD increased the mechanical and thermal nociceptive thresholds and reduced the WDR neuron firing. LC:SC activation (daily, 7 days) downregulated TNF-α and IL-1ß expression, upregulated IL-4 and IL-10 expression in SDH, and inhibited microglia and astrocytes activation in NP mice. Immunofluorescence double staining confirmed that LC:SC activation decreased the expression of cytokines in microglia of the SDH. In addition, the effects of LC:SC activation could be reversed by intrathecal injection of yohimbine. Immunofluorescence of SDH showed that NE receptor α2B-AR was highly expressed in microglia in CCI mice. CONCLUSION: These findings indicate that selective activation of LC:SC alleviates NP in mice by increasing the release of NE and reducing neuroinflammation of astrocytes and microglia in SDH.
Asunto(s)
Neuronas Adrenérgicas , Neuralgia , Neuronas Adrenérgicas/metabolismo , Animales , Astrocitos/metabolismo , Citocinas/metabolismo , Locus Coeruleus/metabolismo , Ratones , Microglía/metabolismo , Neuralgia/metabolismo , Enfermedades Neuroinflamatorias , Norepinefrina/metabolismo , Asta Dorsal de la Médula Espinal/metabolismoRESUMEN
The autoantibody in patients' serum can act as a biomarker for diagnosing cancer, and the differences in autoantibodies are significantly correlated with the changes in their target proteins. In this study, 16 renal cancer (RC) patients were assigned to the disease group, and 16 healthy people were assigned to the healthy control (HC) group. The human proteome microarray consisting of>19,500 proteins was used to examine the differences in IgG and IgM autoantibodies in sera between RC and HC. The comparative analysis of the microarray results shows that 101 types of IgG and 25 types of IgM autoantibodies are significantly higher in RC than in HC. Highly responsive autoantibodies can be candidate biomarkers (e.g., anti-KCNAB2 IgG and anti-RCN1 IgM). Extensive enzyme-linked immunosorbent assay (ELISA) was performed to screen sera in 72 RC patients and 66 healthy volunteers to verify the effectiveness of the new autoantibodies. The AUCs of anti-KCNAB2 IgG and anti-GAPDH IgG were 0.833 and 0.753, respectively. KCNAB2 achieves high protein expression, and its high mRNA level is confirmed to be an unfavorable prognostic marker in clear cell renal cell carcinoma (ccRCC) tissues. This study suggests that the high-throughput human proteome microarray can effectively screen autoantibodies in serum as candidate biomarkers, and their corresponding target proteins can lay a basis for the in-depth investigation into renal cancer.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Autoanticuerpos , Carcinoma de Células Renales/diagnóstico , Proteoma , Detección Precoz del Cáncer , Biomarcadores , Neoplasias Renales/diagnóstico , Inmunoglobulina G , Inmunoglobulina M , Ensayo de Inmunoadsorción EnzimáticaRESUMEN
PURPOSE: The aim of the current study was to explore the role of the basal forebrain (BF) in propofol anaesthesia. METHODS: In the present study, we observed the neural activities of the BF during propofol anaesthesia using calcium fibre photometry recording. Subsequently, ibotenic acid was injected into the BF to verify the role of the BF in propofol anaesthesia. Finally, to test whether GABAA receptors in the BF were involved in modulating propofol anaesthesia, muscimol (GABAA receptor agonist) and gabazine (GABAA receptor antagonist) were microinjected into the BF. Cortical electroencephalogram (EEG), time to loss of righting reflex (LORR), and recovery of righting reflex (RORR) under propofol anaesthesia were recorded and analysed. RESULTS: The activity of BF neurons was inhibited during induction of propofol anaesthesia and activated during emergence from propofol anaesthesia. In addition, non-specifical lesion of BF neurons significantly prolonged the time to RORR and increased delta power in the frontal cortex under propofol anaesthesia. Next, microinjection of muscimol into the BF delayed emergence from propofol anaesthesia, increased delta power of the frontal cortex, and decreased gamma power under propofol anaesthesia. Conversely, infusion of gabazine accelerated emergence times and decreased EEG delta power. CONCLUSIONS: The basal forebrain is involved in modulating frontal cortex delta activity and emergence from propofol anaesthesia. Additionally, the GABAA receptors in the basal forebrain are involved in regulating emergence propofol anaesthesia.
Asunto(s)
Anestesia , Prosencéfalo Basal , Propofol , Animales , Prosencéfalo Basal/metabolismo , Electroencefalografía , Muscimol/farmacología , Propofol/farmacología , Ratas , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
OBJECTIVES: To study the clinical features of intestinal polyps and the risk factors for secondary intussusception in children. METHODS: A retrospective analysis was performed for the medical data of 2 669 children with intestinal polyps. According to the presence or absence of secondary intussusception, they were divided into two groups: intussusception (n=346) and non-intussusception (n=2 323). Related medical data were compared between the two groups. The multivariate logistic regression analysis was used to identify the risk factors for secondary intussusception. RESULTS: Among the children with intestinal polyps, 62.42% were preschool children, and the male/female ratio was 2.08â¶1; 92.66% had hematochezia as disease onset, and 94.34% had left colonic polyps and rectal polyps. There were 346 cases of secondary intussusception, with an incidence rate of 12.96% (346/2 669). Large polyps (OR=1.644, P<0.001), multiple polyps (≥2) (OR=6.034, P<0.001), and lobulated polyps (OR=93.801, P<0.001) were the risk factors for secondary intussusception. CONCLUSIONS: Intestinal polyps in children often occur in preschool age, mostly in boys, and most of the children have hematochezia as disease onset, with the predilection sites of the left colon and the rectum. Larger polyps, multiple polyps, and lobulated polyps may increase the risk of secondary intussusception, and endoscopic intervention is needed as early as possible to improve prognosis.
Asunto(s)
Intususcepción , Preescolar , Femenino , Hemorragia Gastrointestinal , Humanos , Pólipos Intestinales/complicaciones , Intususcepción/complicaciones , Masculino , Estudios Retrospectivos , Factores de RiesgoRESUMEN
BACKGROUND: COVID-19 has spread rapidly around the world, affecting a large percentage of the population. When lifting certain mandatory measures for an economic restart, robust surveillance must be established and implemented, with nucleic acid detection for SARS-CoV-2 as an essential component. METHODS: We tried to develop a one-tube detection platform based on RT-RPA (Reverse Transcription and Recombinase Polymerase Isothermal Amplification) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR) technology, termed OR-DETECTR, to detect SARS-CoV-2. We designed RT-RPA primers of the RdRp and N genes following the SARS-CoV-2 gene sequence. We optimized reaction components so that the detection process could be carried out in one tube. Specificity was demonstrated by detecting nucleic acid samples from pseudoviruses from seven human coronaviruses and Influenza A (H1N1). Clinical samples were used to validate the platform and all results were compared to rRT-PCR. RNA standards and pseudoviruses diluted by different gradients were used to demonstrate the detection limit. Additionally, we have developed a lateral flow assay based on OR-DETECTR for detecting COVID-19. RESULTS: The OR-DETECTR detection process can be completed in one tube, which takes approximately 50 min. This method can specifically detect SARS-CoV-2 from seven human coronaviruses and Influenza A (H1N1), with a low detection limit of 2.5 copies/µl input (RNA standard) and 1 copy/µl input (pseudovirus). Results of six samples from SARS-CoV-2 patients, eight samples from patients with fever but no SARS-CoV-2 infection, and one mixed sample from 40 negative controls showed that OR-DETECTR is 100% consistent with rRT-PCR. The lateral flow assay based on OR-DETECTR can be used for the detection of COVID-19, and the detection limit is 2.5 copies/µl input. CONCLUSIONS: The OR-DETECTR platform for the detection of COVID-19 is rapid, accurate, tube closed, easy-to-operate, and free of large instruments.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Sistemas CRISPR-Cas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcripción Reversa/genética , SARS-CoV-2/aislamiento & purificación , Secuencia de Bases , Humanos , Límite de Detección , ARN Viral/genética , Estándares de Referencia , SARS-CoV-2/genéticaRESUMEN
It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep-wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in ß-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.
Asunto(s)
Anestésicos Intravenosos/farmacología , Nivel de Alerta/fisiología , Núcleo Accumbens/metabolismo , Propofol/farmacología , Receptores de Dopamina D1/metabolismo , Animales , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos , Ratas Sprague-DawleyRESUMEN
BACKGROUND AND AIM: As a Rac1 guanine nucleotide exchange factor, T-cell lymphoma invasion and metastasis 2 (TIAM2) has been reported to be correlated with malignant phenotypes in several cancers, but its prognostic significance and function in pancreatic ductal adenocarcinoma (PDAC) was not investigated. METHODS: The expression patterns of TIAM2 and patient survival were analyzed in a large cohort of 303 patients with radical surgical resection of PDAC, using immunohistochemical staining in tissue microarrays. Data mining was applied to evaluate TIAM2 expression and patient survival at the mRNA level. The function of TIAM2 in proliferation, motility and invasion of pancreactic cancer (PC) cells was also investigated. RESULTS: TIAM2 expression was significantly increased in PDAC compared with para-tumor tissues (p < .0001). The expression of TIAM2 was associated with histopathological grade (p = .008), tumor location (p = .013), and pathological T stage (p = .029). For survival, patients with high TIAM2 expression had significantly poor prognosis in some subgroups. In addition, multivariate analyses showed that the combination of TIAM2 and the pathological N stage largely enhanced the prognostic efficiency, and was found to be as an independent prognostic indicator in patients with PDAC. Data mining elucidated that TIAM2 mRNA expression level was increased in tumor tissues and correlated with patient survival. Furthermore, high TIAM2 expression was common in PC cells. Downregulation of TIAM2 suppressed cell proliferation, migration and invasion in PC. CONCLUSIONS: High expression of TIAM2 might be a meaningful prognostic factor for PDAC patients, and TIAM2 participates in tumor progression in PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , PronósticoRESUMEN
BACKGROUND AND AIM: Ubiquitin-specific peptidase 15 (USP15) has been correlated to aggressive oncogenic behavior in several types of carcinomas, but its function in pancreatic ductal adenocarcinoma (PDAC) has not been clarified. This study aimed to evaluate the clinicopathological and prognostic value of USP15 and its relationship with transforming growth factor-ß (TGF-ß) receptors (TßRs) in PDAC. METHODS: By immunohistochemical staining of tissue microarrays, the expression patterns of USP15 and TßRs were retrospectively analyzed in 287 PDAC patients who underwent radical surgical resection without neoadjuvant therapy. Cancer-specific survival was compared based on USP15 expression, and the correlations between USP15 and TßRs were analyzed. RESULTS: Ubiquitin-specific peptidase 15 expression in tumor tissues was significantly higher than that in para-tumor tissues (P < 0.0001), and high USP15 expression was associated with the pathological N (pN) stage (P = 0.033). In addition, high USP15 expression was significantly associated with shorter cancer-specific survival (P = 0.019). Univariate analyses showed that high USP15 expression (P = 0.024), a poor histopathological grade (P = 0.003), and the pN1 stage (P = 0.009) were significantly correlated with shorter survival. Although the independent prognostic value of USP15 alone was not established, the combination of USP15 and the histological grade was identified as an independent prognostic factor in multivariate analyses (P = 0.015). USP15 expression was correlated with TßR-I, TßR-II, or TßR-III expression in PDAC. CONCLUSIONS: High USP15 expression is a potential prognostic indicator in patients with PDAC, and it might affect the TGF-ß signaling pathway in PDAC.
Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/cirugía , Femenino , Expresión Génica/genética , Humanos , Masculino , Clasificación del Tumor , Pancreatectomía , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/cirugía , Pronóstico , Estudios Retrospectivos , Transducción de Señal/genética , Transducción de Señal/fisiología , Tasa de SupervivenciaRESUMEN
Ubiquitin-specific protease 4 (USP4), has been reported to participate in the progression of various cancers due to its role in post-translational modulation. However, the prognostic significance and mechanism of USP4 in pancreatic cancer (PC) have not been well elucidated before. In the present study, we found that USP4 expression was higher in PC tissues than that in adjacent normal tissues and PC patients with high level of USP4 expression have a poor prognosis via immunohistochemistry and bioinformatics analyses. In vitro study showed that knockdown of USP4 inhibited PC cells proliferation, migration and invasion. Mechanistically, USP4 can activate nuclear factor kappa-B signaling pathway via stabilizing TNF receptor associated factor 6 at its protein level to promote the ability of proliferation, migration and invasion of PC cells. The results of this study revealed that USP4 plays a tumor-promoting role in PC and can be used as a prognostic indicator and therapeutic target for patients with resected PC.
Asunto(s)
Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Proteasas Ubiquitina-Específicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Estudios de Cohortes , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , FN-kappa B/metabolismo , Invasividad Neoplásica , Neoplasias Pancreáticas/genética , Pronóstico , Estabilidad Proteica , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismoRESUMEN
Cancer remains one of the major culprits causing disease-related deaths and leads to a high morbidity and similar mortality. Insidious onset, difficult early detection and a lack of broad-spectrum and effective multi-cancer therapeutic targets have limited the prolongation of cancer patients' survival for decades. Therefore, a versatile therapeutic target which is involved in various cancer-related signaling pathways and different cancers may be more effective for cancer targeted therapy. USP4, one of the DUBs members which participates in deubiquitination, an inverse process of ubiquitination, can regulate various classical cancer-related signaling pathways, and thereby plays a vital role in some pathological and physiological processes including tumor initiation and progression. Recently, USP4 has been found to exert versatile influences on cells proliferation, migration and invasion, also apoptosis of various tumors. Moreover, USP4 can also act as a prognostic biomarker in several cancers. This review will give a comprehensive introduction of USP4 about its regulatory mechanisms, related signaling pathways, pathophysiological functions and the roles in various cancers which may help us better understand its biological functions and improve future studies to construct suitable USP4-targeted cancer therapy system.
RESUMEN
Pancreatic cancer is one of the main causes of tumor-related deaths worldwide because of its low morbidity but extremely high mortality, and is therefore colloquially known as the "king of cancer." Sudden onset and lack of early diagnostic biomarkers directly contribute to the extremely high mortality rate of pancreatic cancer patients, and also make it indistinguishable from benign pancreatic diseases and precancerous pancreatic lesions. Additionally, the lack of effective prognostic biomarkers makes it difficult for clinicians to formulate precise follow-up strategies based on the postoperative characteristics of the patients, which results in missed early diagnosis of recurrent pancreatic cancer. Long non-coding RNAs (lncRNAs) can influence cell proliferation, invasion/migration, apoptosis, and even chemoresistance via regulation of various signaling pathways, leading to pro- or anti-cancer outcomes. Given the versatile effects of lncRNAs on tumor progression, using a single lncRNA or combination of several lncRNAs may be an effective method for tumor diagnosis and prognostic predictions. This review will give a comprehensive overview of the most recent research related to lncRNAs in pancreatic cancer progression, as targeted therapies, and as biomarkers for the diagnosis and prognosis of pancreatic cancer.
RESUMEN
Electroencephalogram monitoring during propofol (PRO) anesthesia typically features low-frequency oscillations, which may be involved with thalamic reticular nucleus (TRN) modulation. TRN receives noradrenergic inputs from the locus coeruleus (LC). We hypothesized that specific noradrenergic connections in the TRN may contribute to the emergence from PRO anesthesia. Intranuclei norepinephrine (NE) injections (n = 10) and designer receptors exclusively activated by designer drugs (DREADDs) (n = 10) were used to investigate the role of noradrenergic inputs from the LC to the TRN during PRO anesthesia. Whole-cell recording in acute brain slice preparations was used to identify the type of adrenoceptor that regulates noradrenergic innervation in the TRN. An intracerebral injection of NE into the TRN delays arousal in mice recovering from PRO anesthesia (means ± sd; 486.6 ± 57.32 s for the NE injection group vs. 422.4 ± 48.19 s for the control group; P = 0.0143) and increases the cortical-δ (0.1-4 Hz, 25.4 ± 2.9 for the NE injection group vs. 21.0 ± 1.7 for the control group; P = 0.0094) oscillation. An intra-TRN injection of NE also decreased the EC50 of PRO-induced unconsciousness (57.05 ± 1.78 mg/kg for the NE injection group vs. 72.44 ± 3.23 mg/kg for the control group; P = 0.0096). Moreover, the activation of LC-noradrenergic nerve terminals in the TRN using DREADDs increased the recovery time [466.1 ± 44.57 s for the clozapine N-oxide (CNO) injection group vs. 426.1 ± 38.75 s for the control group; P = 0.0033], decreased the EC50 of PRO-induced unconsciousness (64.77 ± 3.40 mg/kg for the CNO injection group vs. 74.00 ± 2.08 mg/kg for the control group; P = 0.0081), and increased the cortical-δ oscillation during PRO anesthesia (23.29 ± 2.58 for the CNO injection group vs. 19.56 ± 1.9 for the control group; P = 0.0213). In addition, whole-cell recording revealed that NE augmented the inhibitory postsynaptic currents in the TRN neurons via the α1-adrenoceptor. Our data indicated that enhanced NE signaling at the noradrenergic terminals of the LC-TRN projection delays arousal from general anesthesia, which is likely mediated by the α1-adrenoceptor activation. Our findings open a door for further understanding of the functions of various LC targets in both anesthesia and arousal.-Zhang, Y., Fu, B., Liu, C., Yu, S., Luo, T., Zhang, L., Zhou, W., Yu, T. Activation of noradrenergic terminals in the reticular thalamus delays arousal from propofol anesthesia in mice.
Asunto(s)
Neuronas Adrenérgicas/fisiología , Anestesia General , Nivel de Alerta/fisiología , Retraso en el Despertar Posanestésico/fisiopatología , Núcleos Talámicos Intralaminares/fisiopatología , Terminaciones Nerviosas/fisiología , Receptores Adrenérgicos alfa 1/fisiología , Neuronas Adrenérgicas/efectos de los fármacos , Anestésicos Intravenosos , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Drogas de Diseño/farmacología , Electroencefalografía , Vectores Genéticos/administración & dosificación , Núcleos Talámicos Intralaminares/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Terminaciones Nerviosas/efectos de los fármacos , Norepinefrina/farmacología , Técnicas de Placa-Clamp , Propofol , Distribución Aleatoria , Receptor Muscarínico M3/efectos de los fármacos , Receptor Muscarínico M3/fisiología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Reflejo de Enderezamiento/efectos de los fármacos , Método Simple Ciego , Organismos Libres de Patógenos Específicos , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/fisiologíaRESUMEN
Proteins, as the major executer for cell progresses and functions, its abundance and the level of post-translational modifications, are tightly monitored by regulators. Genetic perturbation could help us to understand the relationships between genes and protein functions. Herein, to explore the impact of the genome-wide interruption on certain protein, we developed a cell lysate microarray on kilo-conditions (CLICK) with 4837 knockout (YKO) and 322 temperature-sensitive (ts) mutant strains of yeast (Saccharomyces cerevisiae). Taking histone marks as examples, a general workflow was established for the global identification of upstream regulators. Through a single CLICK array test, we obtained a series of regulators for H3K4me3, which covers most of the known regulators in S. cerevisiae We also noted that several group of proteins are involved in negatively regulation of H3K4me3. Further, we discovered that Cab4p and Cab5p, two key enzymes of CoA biosynthesis, play central roles in histone acylation. Because of its general applicability, CLICK array could be easily adopted to rapid and global identification of upstream protein/enzyme(s) that regulate/modify the level of a protein or the posttranslational modification of a non-histone protein.