Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 116(3): 598-609, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30080931

RESUMEN

Refocusing of B-cell responses can be achieved by preserving the overall fold of the antigen structure but selectively mutating the undesired antigenic sites with additional N-linked glycosylation motifs for glycan masking the vaccine antigen. We previously reported that glycan-masking recombinant H5 hemagglutinin (rH5HA) antigens on residues 83, 127, and 138 (g127 + g138 or g83 + g127 + 138 rH5HA) elicited broader neutralizing antibodies and protection against heterologous clades/subclades of high pathogenic avian influenza H5N1 viruses. In this study, we engineered the stably expressing Chinese hamster ovary (CHO) cell clones for producing the glycan-masking g127 + g138 and g83 + g127 + g138 rH5HA antigens. All of these glycan-masking rH5HA antigens produced in stable CHO cell clones were found to be mostly oligomeric structures. Only the immunization with the glycan-masking g127 + g138 but not g83 + g127 + g138 rH5HA antigens elicited more potent neutralizing antibody titers against four out of five heterologous clades/subclades of H5N1 viral strains. The increased neutralizing antibody titers against these heterologous viral strains were correlated with the increased amounts of stem-binding antibodies, only the glycan-masking g127 + g138 rH5HA antigens can translate into more protection against live viral challenges. The stable CHO cell line-produced glycan-masking g127 + g138 rH5HA can be used for H5N1 subunit vaccine development.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Ingeniería de Proteínas/métodos , Proteínas Recombinantes , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Células CHO , Cricetinae , Cricetulus , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/metabolismo , Ratones , Ratones Endogámicos BALB C , Polisacáridos/química , Polisacáridos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
2.
Clin Infect Dis ; 60(5): 797-803, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25352588

RESUMEN

Enterovirus 71 (EV71) and coxsackieviruses are the major causative agents of hand, foot, and mouth disease (HFMD) outbreaks worldwide and have a significant socioeconomic impact, particularly in Asia. Formalin-inactivated (FI) EV71 vaccines evaluated in human clinical trials in China, Taiwan, and Singapore were found to be safe and to elicit strong neutralizing antibody responses against EV71 currently circulating in Asia. The results from 3 different phase 3 clinical trials performed in young children (6-60 months) indicate that the efficacy of FI-EV71 vaccines is >90% against EV71-related HFMDs and >80% against EV71-associated serious diseases, but the vaccines did not protect against coxsackievirus A16 infections. Here we discuss the critical factors affecting EV71 vaccine product registration, including clinical epidemiology, antigenic shift issues in cross-protection and vaccine strain selection, standardized animal models for potency testing, and cost-effective manufacturing processes for potential incorporation of FI-EV71 vaccine into Expanded Programme on Immunization vaccines.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Enfermedad de Boca, Mano y Pie/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Variación Antigénica , Ensayos Clínicos Fase III como Asunto , Protección Cruzada , Modelos Animales de Enfermedad , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Resultado del Tratamiento , Vacunas Virales/aislamiento & purificación
3.
J Virol ; 88(20): 11658-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25078697

RESUMEN

Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) with severe neurological symptoms. Antiviral type I interferon (alpha/beta interferon [IFN-α/ß]) responses initiated from innate receptor signaling are inhibited by EV71-encoded proteases. It is less well understood whether EV71-induced apoptosis provides a signal to activate type I interferon responses as a host defensive mechanism. In this report, we found that EV71 alone cannot activate Toll-like receptor 9 (TLR9) signaling, but supernatant from EV71-infected cells is capable of activating TLR9. We hypothesized that TLR9-activating signaling from plasmacytoid dendritic cells (pDCs) may contribute to host defense mechanisms. To test our hypothesis, Flt3 ligand-cultured DCs (Flt3L-DCs) from both wild-type (WT) and TLR9 knockout (TLR9KO) mice were infected with EV71. More viral particles were produced in TLR9KO mice than by WT mice. In contrast, alpha interferon (IFN-α), monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), IFN-γ, interleukin 6 (IL-6), and IL-10 levels were increased in Flt3L-DCs from WT mice infected with EV71 compared with TLR9KO mice. Seven-day-old TLR9KO mice infected with a non-mouse-adapted EV71 strain developed neurological lesion-related symptoms, including hind-limb paralysis, slowness, ataxia, and lethargy, but WT mice did not present with these symptoms. Lung, brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice exhibited significantly higher viral loads than equivalent tissues collected from WT mice. Histopathologic damage was observed in brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice infected with EV71. Our findings demonstrate that TLR9 is an important host defense molecule during EV71 infection. Importance: The host innate immune system is equipped with pattern recognition receptors (PRRs), which are useful for defending the host against invading pathogens. During enterovirus 71 (EV71) infection, the innate immune system is activated by pathogen-associated molecular patterns (PAMPs), which include viral RNA or DNA, and these PAMPs are recognized by PRRs. Toll-like receptor 3 (TLR3) and TLR7/8 recognize viral nucleic acids, and TLR9 senses unmethylated CpG DNA or pathogen-derived DNA. These PRRs stimulate the production of type I interferons (IFNs) to counteract viral infection, and they are the major source of antiviral alpha interferon (IFN-α) production in pDCs, which can produce 200- to 1,000-fold more IFN-α than any other immune cell type. In addition to PAMPs, danger-associated molecular patterns (DAMPs) are known to be potent activators of innate immune signaling, including TLR9. We found that EV71 induces cellular apoptosis, resulting in tissue damage; the endogenous DNA from dead cells may activate the innate immune system through TLR9. Therefore, our study provides new insights into EV71-induced apoptosis, which stimulates TLR9 in EV71-associated infections.


Asunto(s)
Enterovirus Humano A/aislamiento & purificación , Infecciones por Enterovirus/prevención & control , Receptor Toll-Like 9/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Citocinas/metabolismo , Cartilla de ADN , Enterovirus Humano A/fisiología , Ensayo de Inmunoadsorción Enzimática , Interferón Tipo I/biosíntesis , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 9/genética , Replicación Viral
4.
J Virol ; 87(16): 9064-76, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760234

RESUMEN

Enterovirus 71 (EV71) causes hand, foot, and mouth disease and severe neurological disorders in children. Human scavenger receptor class B member 2 (hSCARB2) and P-selectin glycoprotein ligand-1 (PSGL-1) are identified as receptors for EV71. The underling mechanism of PSGL-1-mediated EV71 entry remains unclear. The endocytosis required for EV71 entry were investigated in Jurkat T and mouse L929 cells constitutively expressing human PSGL-1 (PSGL-1-L929) or human rhabdomyosarcoma (RD) cells displaying high SCARB2 but no PSGL-1 by treatment of specific inhibitors or siRNA. We found that disruption of clathrin-dependent endocytosis prevented EV71 infection in RD cells, while there was no influence in Jurkat T and PSGL-1-L929 cells. Disturbing caveolar endocytosis by specific inhibitor or caveolin-1 siRNA in Jurkat T and PSGL-1-L929 cells significantly blocked EV71 infection, whereas it had no effect on EV71 infection in RD cells. Confocal immunofluorescence demonstrated caveola, and EV71 was directly colocalized. pH-dependent endosomal acidification and intact membrane cholesterol were important for EV71 infection, as judged by the pretreatment of inhibitors that abrogated the infection. A receptor-dominated endocytosis of EV71 infection was observed: PSGL-1 initiates caveola-dependent endocytosis and hSCARB2 activates clathrin-dependent endocytosis.


Asunto(s)
Endocitosis , Enterovirus Humano A/fisiología , Glicoproteínas de Membrana/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Caveolina 1/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Microscopía Confocal
5.
J Microbiol Immunol Infect ; 56(6): 1121-1128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919172

RESUMEN

BACKGROUND: Vaccine stability is an important issue for vaccine development, which affects whether the vaccine product is effective within a certain period of time in each progress. Hand, foot, and mouth diseases (HFMD) is an epidemic disease in young children usually caused by Enterovirus A group viruses, and the Enterovirus A71 (EV-A71) had caused several pandemics and public health issues around the world. After two decades of research and development, formalin-inactivated EV-A71 (FI-EV-A71) vaccines are the first to complete the phase III clinical trials for protection against EV-A71 infection. Currently, the shelf life of FI-EV-A71 vaccine product is set to be within 18 months, but the stability and the effectiveness of the FI-EV-A71 whole virion when stored long-term at low temperature remains undetermined. METHODS: Assessing the long-term storage properties of viral particles facilitates flexibility in manufacturing of vaccine products. In this study, the stability profiles of FI-EV-A71 vaccine lots and bulks after long-term of low temperature storage were analyzed by protein tests, particle measurement and animal immunization study. RESULTS: After over ten years of storage, the reduction of protein concentration in the FI-EV-A71 bulk samples is less than 30 % and the antigenic content remained in a suspended, particulate state. Both the packed FI-EV-A71 final vaccine products and the FI-EV-A71 antigens adjuvant premix bulk could elicit strong neutralizing responses in mice. CONCLUSION: After ten years of low temperature storage, the FI-EV-A71 vaccine still presents decent stability and good immunogenicity.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas Virales , Niño , Humanos , Animales , Ratones , Preescolar , Vacunas de Productos Inactivados , Temperatura , Infecciones por Enterovirus/prevención & control , Antígenos Virales , Virión
6.
Virus Res ; 329: 199101, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958398

RESUMEN

Coxsackievirus A10 (CVA10) is one of enteroviral pathogens that cause the hand, foot, and mouth disease (HFMD). Since CVA10 was reported to be not easily propagated in the Vero cell culture, a feasible manufacture process for producing formalin-inactivated CVA10 vaccine is urgently needed. Several cell lines that commonly used for viral vaccine production was tested for CVA10 (M2014 strain) culture in this study, and our result showed that CVA10 could be easily propagated in the HEK293A cells. A serum-free HEK293A cell culture system was developed for CVA10 production and the yields have reached over 108 TCID50/mL. The biochemical and immunogenic properties of CVA10 particles obtained from this serum-free HEK293A culture were identical to our previous study. Two major particles of CVA10 were separated by ultracentrifugation, and only the infectious mature particles were capable of inducing CVA10 neutralizing antibody responses in the mouse immunogenicity studies. Additionally, we found that coxsackievirus A6 and enterovirus A71 could also be easily propagated using this serum-free HEK293A cell culture system. Our results provide a solution to overcome the obstacle in the propagation of CVA10 and facilitate the development of multivalent vaccines for prevention of HFMD.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Ratones , Enfermedad de Boca, Mano y Pie/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas de Productos Inactivados , Enterovirus Humano A/genética
7.
Clin Dev Immunol ; 2012: 831282, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23008736

RESUMEN

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot, and mouth diseases (HFMDs), and EV71 is now recognized as an emerging neurotropic virus in Asia. Effective medications and/or prophylactic vaccines against HFMD are not available. The current results from mouse immunogenicity studies using in-house standardized RD cell virus neutralization assays indicate that (1) VP1 peptide (residues 211-225) formulated with Freund's adjuvant (CFA/IFA) elicited low virus neutralizing antibody response (1/32 titer); (2) recombinant virus-like particles produced from baculovirus formulated with CFA/IFA could elicit good virus neutralization titer (1/160); (3) individual recombinant EV71 antigens (VP1, VP2, and VP3) formulated with CFA/IFA, only VP1 elicited antibody response with 1/128 virus neutralization titer; and (4) the formalin-inactivated EV71 formulated in alum elicited antibodies that cross-neutralized different EV71 genotypes (1/640), but failed to neutralize CVA16. In contrast, rabbits antisera could cross-neutralize strongly against different genotypes of EV71 but weakly against CVA16, with average titers 1/6400 and 1/32, respectively. The VP1 amino acid sequence dissimilarity between CVA16 and EV71 could partially explain why mouse antibodies failed to cross-neutralize CVA16. Therefore, the best formulation for producing cost-effective HFMD vaccine is a combination of formalin-inactivated EV71 and CAV16 virions.


Asunto(s)
Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas de la Cápside/química , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Infecciones por Enterovirus/prevención & control , Infecciones por Enterovirus/virología , Femenino , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Conejos , Rabdomiosarcoma/inmunología , Rabdomiosarcoma/virología , Vacunas Sintéticas , Células Vero , Carga Viral/inmunología , Proteínas Estructurales Virales/inmunología , Vacunas Virales/farmacología , Virión/inmunología
8.
Expert Opin Drug Discov ; 17(1): 27-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34382876

RESUMEN

INTRODUCTION: Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED: The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION: The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.


Asunto(s)
Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Vacunas , Vacunas Virales , Animales , Antivirales/farmacología , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunas Sintéticas , Vacunas de ARNm
9.
Pharmaceutics ; 14(5)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35631599

RESUMEN

Zika virus (ZIKV) infections in humans are mainly transmitted by the mosquito vectors, but human-to-human sexual transmission is also another important route. Developing a ZIKV mucosal vaccine that can elicit both systemic and mucosal immune responses is of particular interest. In this study, we constructed a recombinant ZIKV envelope DIII (ZDIII) protein genetically fused with Salmonella typhimurium flagellin (FliC-ZDIII) as a novel mucosal antigen for intranasal immunization. The results indicated that the FliC-ZDIII fusion proteins formulated with E. coli heat-labile enterotoxin B subunit (LTIIb-B5) adjuvant greatly increased the ZDIII-specific IgG, IgA, and neutralizing titers in sera, and the ZDIII-specific IgA titers in bronchoalveolar lavage and vaginal fluids. Protective immunity was further assessed by subcutaneous and intravaginal ZIKV challenges. The second-generation FliCΔD3-2ZDIII was shown to result in a reduced titer of anti-FliC IgG antibodies in sera and still retained the same levels of serum IgG, IgA, and neutralizing antibodies and mucosal IgA antibodies without compromising the vaccine antigenicity. Therefore, intranasal immunization with FliCΔD3-2ZDIII fusion proteins formulated with LTIIb-B5 adjuvant elicited the greatest protective immunity against subcutaneous and intravaginal ZIKV challenges. Our findings indicated that the combination of FliCΔD3-2ZDIII fusion proteins and LTIIb-B5 adjuvant for intranasal immunization can be used for developing ZIKV mucosal vaccines.

10.
J Chromatogr A ; 1680: 463427, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36029731

RESUMEN

Virions produced from cell culture is the primary source for production of formalin-inactivated whole virus vaccines for enteroviruses. EV-A71 particles produced from culture system comprise two major types, the immature/empty (E)-particle and the mature/full (F)-particle, which both exhibit low isoelectric point (pI) values but have distinct differences in infectivity and immunogenicity. Although EV-A71 particles can conventionally be separated into E-particle and F-particle using sucrose gradient ultracentrifugation, this procedure is cumbersome and difficult to put into practice for vaccine production. Methods based on ion-exchange chromatography have been exploited to improve the purification efficacy; however, none of them are capable of separating the E- and F-particles efficiently. In this study, we aimed to develop an approach to isolate and purify the highly immunogenic mature EV-A71 particles. By applying a step gradient elution procedure, we successfully isolated the viral structure protein VP0-cleaved particles of EV-A71 from a mixture of cultured viral solution using the Q-membrane anion-exchange chromatography. The elution started with 0.1x phosphate buffered saline (PBS) solution while increasing the percentage of 1x PBS containing 1M NaCl in sequential steps. By this procedure, the VP0-cleaved mature particles and VP0-uncleaved immature particles of EV-A71 could be separated into different fractions in Q-membrane with gradually increased NaCl concentration in elution buffer. The purified VP0-cleaved particles were shown to have characteristics equivalent to those of the highly infectious F-particles of EV-A71. The overall recovery rate for the mature EV-A71 particles by Q-membrane is 56% and its purity was shown to be equivalent to those isolated by the sucrose gradient ultracentrifugation. Our approach provides a simple and efficient purification method for recovering mature, highly infectious virus particles from the EV-A71 culture bulk.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Aniones , Antígenos Virales , Infecciones por Enterovirus/prevención & control , Humanos , Cloruro de Sodio , Sacarosa
11.
Biol Open ; 11(9)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35929543

RESUMEN

Enterovirus 71 (EV71) is one of the causative agents of hand-foot-and-mouth disease, which in some circumstances could lead to severe neurological diseases. Despite of its importance for human health, little is known about the early stages of EV71 infection. EV71 starts uncoating with its receptor, human scavenger receptor B2 (hSCARB2), at low pH. We show that EV71 was not targeted to lysosomes in human rhabdomyosarcoma cells overexpressing hSCARB2 and that the autophagic pathway is not essential for EV71 productive uncoating. Instead, EV71 was efficiently uncoated 30 min after infection in late endosomes (LEs) containing hSCARB2, mannose-6-phosphate receptor (M6PR), RAB9, bis(monoacylglycero)phosphate and lysosomal associated membrane protein 2 (LAMP2). Furthering the notion that mature LEs are crucial for EV71 uncoating, cation-dependent (CD)-M6PR knockdown impairs EV71 infection. Since hSCARB2 interacts with cation-independent (CI)-M6PR through M6P-binding sites and CD-M6PR also harbor a M6P-binding site, CD-M6PR is likely to play important roles in EV71 uncoating in LEs.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Animales , Cationes/metabolismo , Endosomas/metabolismo , Enterovirus/metabolismo , Enterovirus Humano A/metabolismo , Humanos , Proteínas de Membrana de los Lisosomas/química , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Receptor IGF Tipo 2/metabolismo , Receptores Depuradores/química , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
12.
Methods Mol Biol ; 2248: 139-153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33185873

RESUMEN

Virus-like particle (VLP) technology is an alternative platform for developing vaccines to combat seasonal and pandemic influenza. Influenza VLPs are non-infectious nanoparticles that can elicit effective vaccine immunogenicity in hosts. B-cell-activating factor (BAFF, or BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) superfamily of cytokines. Both BAFF and APRIL are homotrimers that interact with homotrimeric receptors. Here, we report a method of the production of influenza VLPs by molecular incorporation with BAFF or APRIL homotrimers to interact with their receptors. We engineered the VLPs by direct fusion of BAFF or APRIL to the transmembrane anchored domain of the hemagglutinin (HA) gene. We also describe procedures for the production of BAFF-VLPs containing H5H7 and H1H5H7 for multi-subtype vaccine development.


Asunto(s)
Antígenos Virales/inmunología , Factor Activador de Células B/inmunología , Vacunas contra la Influenza/inmunología , Proteínas Recombinantes de Fusión , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Antígenos Virales/genética , Factor Activador de Células B/genética , Baculoviridae/genética , Clonación Molecular , Expresión Génica , Pruebas de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Plásmidos/genética , Proteínas Recombinantes de Fusión/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
13.
Antiviral Res ; 164: 12-22, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30738089

RESUMEN

Virus-like particle (VLP) technology is an attractive platform for the development of seasonal and pandemic influenza vaccines. Influenza VLPs can be obtained by the overexpression of HA, M1, NA, and/or M2 viral proteins in insect, mammalian, or plant cells. In this study, we reported to obtain highly immunogenic influenza VLPs by molecular incorporation with B-cell-activating factor (BAFF) or proliferation-inducing ligand (APRIL). Since BAFF and APRIL act as homotrimers to interact with their receptors, we engineered the VLPs by direct fusion of BAFF or APRIL to the transmembrane anchored domain of H5HA gene. Results showed that immunizations with the HA-transmembrane anchored BAFF- or APRIL-VLPs only formulated in alum but not MPL adjuvant elicited significantly higher IgG titers in sera. However, only the BAFF-VLPs formulated in alum adjuvant elicited more broadly neutralizing antibodies against the homologous and two heterologous H5N1 clade/subclade viruses and conferred protective immunity against live virus challenges. As the multi-subtype influenza vaccines containing a variety of HA subtypes can confer broader protective immunity, we also obtained multi-subtype H5H7 BAFF-VLPs and H1H5H7 BAFF-VLPs and demonstrated that these multi-subtype BAFF-VLPs were able to induce the production of neutralizing antibodies against multiple HA subtypes. Our findings provided useful information for the development of highly immunogenic, multi-subtype influenza VLP vaccines.


Asunto(s)
Anticuerpos Antivirales/sangre , Factor Activador de Células B/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Factor Activador de Células B/administración & dosificación , Reacciones Cruzadas , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/administración & dosificación , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Proteínas Virales/inmunología
14.
Vaccine ; 37(47): 6933-6941, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31383491

RESUMEN

The novel H7N9 avian influenza A virus has caused human infections in China since 2013; some isolates from the fifth wave of infections have emerged as highly pathogenic avian influenza viruses. Recombinant hemagglutinin proteins of H7N9 viruses can be rapidly and efficiently produced with low-level biocontainment facilities. In this study, recombinant H7 antigen was obtained from engineered stable clones of Chinese Hamster Ovary (CHO) cells for subsequent large-scale production. The stable CHO cell clones were also adapted to grow in serum-free suspension cultures. To improve the immunogenicity of the recombinant H7 antigens, we evaluated the use of a novel combination adjuvant of PELC and CpG (PELC/CpG) to augment the anti-H7N9 immune responses in mice. We compared the effects with other adjuvants such as alum, AddaVax (MF59-like), and several Toll-like receptor ligands such as R848, CpG, and poly (I:C). With the PELC/CpG combination adjuvant, CHO cell-expressed rH7 antigens containing terminally sialylated complex type N-glycans were able to induce high titers of neutralizing antibodies in sera and conferred protection following live virus challenges. These data indicate that the CHO cell-expressed recombinant H7 antigens and a PELC/CpG combination adjuvant can be used for H7N9 subunit vaccine development.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Islas de CpG/inmunología , Hemaglutininas/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Proteínas Recombinantes/inmunología , Compuestos de Alumbre/química , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células CHO , Línea Celular , Cricetulus , Femenino , Pruebas de Inhibición de Hemaglutinación/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Ratones , Ratones Endogámicos BALB C , Polisorbatos/química , Escualeno/química , Vacunas de Subunidad/inmunología
15.
Expert Rev Vaccines ; 17(9): 819-831, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30095317

RESUMEN

INTRODUCTION: Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED: We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY: Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Niño , Brotes de Enfermedades , Epítopos/inmunología , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología
16.
Virology ; 521: 181-189, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29960921

RESUMEN

We evaluated the efficacy of a recombinant adenovirus that expresses a membrane-truncated respiratory syncytial virus (RSV) fusion protein (Ad-F0ΔTM) in newborns via maternal immunization (MI) of pregnant cotton rats. Intranasal Ad-F0ΔTM immunization was given to pregnant female rats, and MI-newborn rats were then challenged intranasally with RSV. Anti-RSV IgGs were observed in the serum of MI-newborn rats after birth. The pulmonary viral loads in Ad-F0ΔTM vs. control vector, Ad-LacZ, and MI-newborns on day 3 post-challenge were reduced by 4 log10/g lung. The neutralizing antibody remained for up to 3 weeks in the serum of MI-newborns, which is when weaning began. Ad-F0ΔTM protected MI-newborns from RSV challenge for 1 week. Vertical-transferred protective antibodies were examined in the breast milk and placenta as well. Finally, anti-RSV immunity was not boosted but was only primed during the next RSV exposure in Ad-F0ΔTM-MI-newborns. Maternal Ad-F0ΔTM immunization provides acute protection against RSV infection in neonates.


Asunto(s)
Anticuerpos Antivirales/sangre , Portadores de Fármacos/administración & dosificación , Inmunidad Materno-Adquirida , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunación/métodos , Adenoviridae/genética , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/sangre , Femenino , Vectores Genéticos , Pulmón/virología , Leche Humana/inmunología , Placenta/inmunología , Embarazo , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/genética , Virus Sincitiales Respiratorios/inmunología , Sigmodontinae , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Carga Viral
17.
Sci Rep ; 8(1): 8744, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867107

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Rep ; 8(1): 6688, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703921

RESUMEN

Enterovirus 71 (EV71) is a major cause of hand, foot and mouth disease (HFMD). The current EV71 propagating in Vero (EV-V) or sub-passaged in RD (EV-R) cells was used as a pathogen. Interestingly, EV-R exhibited differential virulence; challenging human scavenger receptor class B2-expressing (hSCARB2-Tg) mice with EV71 revealed that EV-V was more virulent than EV-R: 100% of mice that received lethal amounts of EV-V died, while all the mice that received EV-R survived. Severe pathogenesis correlated with viral burdens and proinflammatory cytokine levels were observed in EV-V-challenged mice, but controversy in EV-R-challenged mice. Consensus sequence analysis revealed EV-R rapidly acquired complete mutations at E145G and S241L and partial mutations at V146I of VP1, and acquired a T to C substitution at nucleotide 494 of the 5'-UTR. EV-R exhibited higher binding affinity for another EV71 receptor, human P-selectin glycoprotein ligand-1 (hPSGL-1), than EV-V. Both EV71s exhibited no significant difference in binding to hSCARB2. The molecular modelling indicate that these mutations might influence EV71 engagement with PSGL-1 and in vivo virulence.


Asunto(s)
Regiones no Traducidas 5' , Enterovirus Humano A/crecimiento & desarrollo , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/patología , Glicoproteínas de Membrana/metabolismo , Mutación , Proteínas Estructurales Virales/genética , Animales , Línea Celular , Chlorocebus aethiops , Citocinas/sangre , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Infecciones por Enterovirus/virología , Humanos , Ratones , Receptores Virales/metabolismo , Análisis de Supervivencia , Carga Viral , Proteínas Virales , Proteínas Estructurales Virales/metabolismo , Virulencia , Acoplamiento Viral
19.
Vaccine ; 36(22): 3134-3139, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28274636

RESUMEN

Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods.


Asunto(s)
Reactores Biológicos/virología , Técnicas de Cultivo de Célula/métodos , Enterovirus Humano A/crecimiento & desarrollo , Vacunas Virales/biosíntesis , Cultivo de Virus/métodos , Animales , Técnicas de Cultivo Celular por Lotes , Chlorocebus aethiops , Inmunogenicidad Vacunal , Ratones , Pruebas de Neutralización , Vacunas de Productos Inactivados/biosíntesis , Células Vero
20.
Antiviral Res ; 130: 27-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27001351

RESUMEN

We have developed an efficient cell culture process to scale up the production of a recombinant adenovirus that expresses the membrane-trunked fusion protein of respiratory syncytial virus (RSV; Ad-F0ΔTM). Adherent cells of human embryonic kidney (HEK) 293-derived cell, 293A, which supports the production of E1/E3-deleted Ad-F0ΔTM when cultured in the presence of fetal bovine serum (FBS), were adapted to suspension growth under serum-free medium. In doing so, we studied the immunogenicity of Ad-F0ΔTMsus, which propagated in a bioreactor that was cultured with serum-free suspension of 293A, in comparison with Ad-F0ΔTMadh, which was produced from parental 293A cells that were adherently cultured in medium containing FBS. The size and morphology of Ad-F0ΔTMsus and Ad-F0ΔTMadh virions were identical upon inspection with electron microscopy. The results showed that anti-F IgG and RSV-neutralizing titer were raised in the serum of both mice that were intranasally immunized twice with Ad-F0ΔTMsus or Ad-F0ΔTMadh at two-week injection intervals. Furthermore, the immune responses persisted for six months after vaccination. Activation of F protein-specific CD8(+) T cell's epitope associated IFN-É£ and IL-4 was induced in both Ad-F0ΔTMsus- and Ad-F0ΔTMadh, but not in Ad-LacZsus, -immunized mouse splenocytes. No vaccine-enhanced lung inflammation, airway mucus occlusion or eosinophils infiltration were observed in Ad-immunized mice followed by RSV challenge; however, these symptoms were observed following immunization with formalin-inactivated RSV vaccine. These results indicate that the safety and potency of Ad-F0ΔTM produced from either adherent cells or suspension and serum-free cells are the same.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/inmunología , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Técnicas de Cultivo de Célula , Línea Celular , Medio de Cultivo Libre de Suero , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/inmunología , Células HEK293 , Humanos , Inmunización Secundaria , Ratones , Pruebas de Neutralización , Ratas , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas de Productos Inactivados/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA