Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7856): 763-767, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762728

RESUMEN

Systemic insulin sensitivity shows a diurnal rhythm with a peak upon waking1,2. The molecular mechanism that underlies this temporal pattern is unclear. Here we show that the nuclear receptors REV-ERB-α and REV-ERB-ß (referred to here as 'REV-ERB') in the GABAergic (γ-aminobutyric acid-producing) neurons in the suprachiasmatic nucleus (SCN) (SCNGABA neurons) control the diurnal rhythm of insulin-mediated suppression of hepatic glucose production in mice, without affecting diurnal eating or locomotor behaviours during regular light-dark cycles. REV-ERB regulates the rhythmic expression of genes that are involved in neurotransmission in the SCN, and modulates the oscillatory firing activity of SCNGABA neurons. Chemogenetic stimulation of SCNGABA neurons at waking leads to glucose intolerance, whereas restoration of the temporal pattern of either SCNGABA neuron firing or REV-ERB expression rescues the time-dependent glucose metabolic phenotype caused by REV-ERB depletion. In individuals with diabetes, an increased level of blood glucose after waking is a defining feature of the 'extended dawn phenomenon'3,4. Patients with type 2 diabetes with the extended dawn phenomenon exhibit a differential temporal pattern of expression of REV-ERB genes compared to patients with type 2 diabetes who do not have the extended dawn phenomenon. These findings provide mechanistic insights into how the central circadian clock regulates the diurnal rhythm of hepatic insulin sensitivity, with implications for our understanding of the extended dawn phenomenon in type 2 diabetes.


Asunto(s)
Ritmo Circadiano , Neuronas GABAérgicas/fisiología , Resistencia a la Insulina , Hígado/fisiología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/fisiología , Animales , Glucemia , Relojes Circadianos , Diabetes Mellitus Tipo 2 , Femenino , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Fotoperiodo , Núcleo Supraquiasmático/citología , Transmisión Sináptica
2.
Langmuir ; 40(12): 6353-6362, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470331

RESUMEN

The biological NO3- removal process might be accompanied by high CO2 emissions and operation costs. Capacitive deionization (CDI) has been widely studied as a very efficient method to purify water. Here, a porous carbon material with a tunable nitrogen configuration was developed. Characterization and density functional theory calculation show that nitrogenous functional groups have a higher NO3- binding energy than Cl-, SO42-, and H2PO4-. In addition, the selectivity of NO3- is improved after the introduction of micropores by using the pore template. The NO3- ion removal and selectivity of MN-C-12 are 4.57 and 3.46-5.42 times that of activated carbon (AC), respectively. The high NO3- selectivity and electrosorption properties of MN-C-12 (the highest N content and micropore area) are due to the synergistic effect of the affinity of nitrogen functional groups to NO3- and microporous ion screening. A CDI unit for the removal of nitrogen from municipal wastewater was constructed and applied to treat wastewater meeting higher discharge standards of A (N: 15 mg L-1) and B (N: 20 mg L-1) ((GB18918-2002), China). This work provides new insights into enhanced carbon materials for the selective electrosorption of wastewater by CDI technology.

3.
BMC Anesthesiol ; 24(1): 13, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172775

RESUMEN

BACKGROUND: The primary purpose of this study was to investigate the predictive value of alterations in cervical artery hemodynamic parameters induced by a simulated end-inspiratory occlusion test (sEIOT) measured by ultrasound for predicting postinduction hypotension (PIH) during general anesthesia. METHODS: Patients undergoing gastrointestinal tumor resection under general anesthesia were selected for this study. Ultrasound has been utilized to assess hemodynamic parameters in carotid artery blood flow before induction, specifically focusing on variations in corrected flow time (ΔFTc) and peak blood flow velocity (ΔCDPV), both before and after sEIOT. Anesthesia was induced by midazolam, sufentanil, propofol, and rocuronium, and blood pressure (BP) and heart rate (HR) were recorded within the first 10 min following endotracheal intubation. PIH was defined as fall in systolic blood pressure (SBP) or mean arterial pressure (MAP) by > 30% of baseline or MAP to < 60 mm Hg. RESULTS: The area under the receiver operating characteristic curves (AUC) for carotid artery ΔFTc was 0.88 (95%CI, 0.81 to 0.96; P < 0.001), and the optimal cutoff value was -16.57%, with a sensitivity of 91.4% and specificity of 77.60%. The gray zone for carotid artery ΔFTc was -16.34% to -15.36% and included 14% of the patients. The AUC for ΔCDPV was 0.54, with an optimal cutoff value of -1.47%. The sensitivity and specificity were calculated as 55.20% and 57.10%, respectively. CONCLUSION: The corrected blood flow time changes in the carotid artery induced by sEIOT can predict hypotension following general anesthesia-induced hypotension, wherein ΔFTc less than 16.57% is the threshold. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( www.chictr.org.cn ; 20/06/2023; ChiCTR2300072632).


Asunto(s)
Hipotensión , Humanos , Hipotensión/diagnóstico por imagen , Hipotensión/etiología , Hemodinámica , Presión Sanguínea/fisiología , Anestesia General/efectos adversos , Arterias Carótidas
4.
Rev Esp Enferm Dig ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258748

RESUMEN

A 48-year-old woman with a high-grade intraepithelial neoplasia of the gastric antrum was referred for ESD treatment.The difficulty of ESD is to expose the submucosa,especially in difficult sites and lesions with severe fibrosis.Adequate submucosal exposure is the most critical technology to reduce complications and improving efficiency.Here we report a novel entire traction method to facilitate safe and efficient ESD.

5.
J Cell Mol Med ; 27(23): 3816-3826, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37724419

RESUMEN

Pyroptosis is involved in ischemic cardiomyopathy (ICM). The study aimed to investigate the pyroptosis-related genes and clarify their diagnostic value in ICM. The bioinformatics method identified the differential pyroptosis genes between the normal control and ICM samples from online datasets. Then, protein-protein interaction (PPI) and function analysis were carried out to explore the function of these genes. Following, subtype analysis was performed using ConsensusClusterPlus, functions, immune score, stromal score, immune cell proportion and human leukocyte antigen (HLA) genes between subtypes were investigated. Moreover, optimal pyroptosis genes were selected using the least absolute shrinkage and selection operator (LASSO) analysis to construct a diagnostic model and evaluate its effectiveness using receiver operator characteristic (ROC) analysis. Twenty-one differential expressed pyroptosis genes were identified, and these genes were related to immune and pyroptosis. Subtype analysis identified two obvious subtypes: sub-1 and sub-2. And LASSO identified 13 optimal genes used to construct the diagnostic model. The diagnostic model in ICM diagnosis with the area under ROC (AUC) was 0.965. Our results suggested that pyroptosis was tightly associated with ICM.


Asunto(s)
Cardiomiopatías , Isquemia Miocárdica , Humanos , Piroptosis/genética , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/genética , Biología Computacional , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética
6.
Small ; 19(50): e2303928, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37625020

RESUMEN

The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF-8/ZnO nanoreactor is constructed. The Ni/ZIF-8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption-PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF-8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities.

7.
J Transl Med ; 21(1): 622, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710295

RESUMEN

BACKGROUND: Biological ageing is tightly linked to cardiovascular disease (CVD). We aimed to investigate the relationship between Life's Essential 8 (LE8), a currently updated measure of cardiovascular health (CVH), and biological ageing. METHODS: This cross-sectional study selected adults ≥ 20 years of age from the 2005-2010 National Health and Nutrition Examination Survey. LE8 scores (range 0-100) were obtained from measurements based on American Heart Association definitions, divided into health behavior and health factor scores. Biological ageing was assessed by different methods including phenotypic age, phenotypic age acceleration (PhenoAgeAccel), biological age and biological age acceleration (BioAgeAccel). Correlations were analyzed by weighted linear regression and restricted cubic spline models. RESULTS: Of the 11,729 participants included, the mean age was 47.41 ± 0.36 years and 5983 (51.01%) were female. The mean phenotypic and biological ages were 42.96 ± 0.41 and 46.75 ± 0.39 years, respectively, and the mean LE8 score was 67.71 ± 0.35. After adjusting for potential confounders, higher LE8 scores were associated with lower phenotypic age, biological age, PhenoAgeAccel, and BioAgeAccel, with nonlinear dose-response relationships. Negative associations were also found between health behavior and health factor scores and biological ageing, and were stronger for health factors. In health factor-specific analyses, the ß negativity was greater for blood glucose and blood pressure. The inverse correlations of LE8 scores with phenotypic age and biological age in the stratified analyses remained solid across strata. CONCLUSIONS: LE8 and its subscale scores were strongly negatively related to biological ageing. Encouraging optimal CVH levels may be advantageous in preventing and slowing down ageing.


Asunto(s)
Envejecimiento , Glucemia , Estados Unidos , Humanos , Adulto , Femenino , Persona de Mediana Edad , Masculino , Estudios Transversales , Encuestas Nutricionales , Presión Sanguínea
8.
Eur J Clin Invest ; 53(11): e14056, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37392033

RESUMEN

BACKGROUND: Evidence of a clear causal relationship between telomere length and aortic aneurysms is limited by the potential for confounding or reverse causation effects. In this study, we used a Mendelian randomisation (MR) approach to investigate this putative causal association. METHODS: In total, 118 telomere length-associated single-nucleotide polymorphisms, identified in 472,174 individuals of European ancestry, were used as the instrumental variables. Summary statistics for genome-wide association studies of aortic aneurysms were obtained from the FinnGen consortium. For the primary MR analyses, the inverse-variance weighted random-effects method was used and was supplemented with multivariable MR, weighted median and MR-Egger approaches. The MR-Egger intercept test, Cochran's Q test and 'leave-one-out' sensitivity analysis were performed to evaluate the horizontal pleiotropy, heterogeneity and stability of the genetic variants. Forward and reverse MR analyses were performed. RESULTS: All forward univariable MR analyses showed that longer telomere lengths decreased aortic aneurysm risks (total aortic aneurysms: OR = 0.80, 95% CI 0.67-0.96, p = .015; thoracic aortic aneurysms: OR = 0.82, 95% CI 0.68-0.98, p = .026; abdominal aortic aneurysms: OR = 0.525, 95% CI 0.398-0.69, p < .001), whereas all reverse MR analyses suggested the absence of aortic aneurysm liability on telomere length. The sensitivity analysis results were robust, and no evidence of horizontal pleiotropy was observed. CONCLUSIONS: Our results support a possible causal association between telomere length and aortic aneurysms, providing new insights into the involvement of telomere biology in this condition and offering a potential avenue for targeted therapeutic interventions.

9.
FASEB J ; 36(10): e22517, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36036527

RESUMEN

Diabetic kidney disease (DKD) is well-acknowledged as one of the most common complications in diabetes mellitus. Recent studies have demonstrated the promising role of mesenchymal stem cell-derived exosomes (MSC-exos) as a cell-free treatment strategy for DKD. The present study sought to investigate the therapeutic potential and the underlying mechanisms of MSC-exos in DKD. The authentication of MSC-exos was validated by western blot, transmission electron microscope (TEM), and nanosight tracking analysis (NTA). Apoptosis was detected by western blot, TUNEL staining, and flow cytometry. Epithelial-to-mesenchymal transition (EMT) was evaluated by western blot and immunofluorescence. The relationship between miR-424-5p and Yes-associated protein 1 (YAP1) was revealed by dual luciferase reporter assay. We observed that MSC-exos could attenuate DKD by decreasing cell apoptosis and inhibiting epithelial-to-mesenchymal transition (EMT) in diabetic kidneys in db/db mice. Besides, we documented that MSC-exos could reverse high glucose-induced apoptosis and EMT in HK2 cells. Interestingly, miR-424-5p derived from MSC-exos could inhibit YAP1 activation in HK2 cells, resulting in alleviation of high glucose-induced cell apoptosis and EMT. Our study provides novel insights into MSC-exos-mediated protective effect in DKD. MSC-exos could inhibit high glucose-induced apoptosis and EMT through miR-424-5p targeting of YAP1.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Apoptosis , Glucosa , Ratones
10.
Anal Bioanal Chem ; 415(12): 2317-2327, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004550

RESUMEN

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is known to be a tobacco-specific N-nitrosamine and has peripheral carcinogenic properties. It can also induce oxidative stress, glial cell activation, and neuronal damage in the brain. However, the distribution and metabolic characteristics of NNK in the central nervous system are still unclear. Here, a sensitive and effective UHPLC-HRMS/MS method was established to identify and investigate the metabolites of NNK and their distribution in the rat brain. In addition, the pharmacokinetic profiles were simultaneously investigated via blood-brain synchronous microdialysis. NNK and its seven metabolites were well quantified in the hippocampus, cortex, striatum, olfactory bulb, brain stem, cerebellum, and other regions of rat brain after peripheral exposure (5 mg/kg, i.p.). The average content of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in all brain regions was at least threefold higher than that of NNK, indicating a rapid carbonyl reduction of NNK in the brain. Lower concentrations of pyridine N-oxidation products in the cortex, olfactory bulb, hippocampus, and striatum might be related to the poor detoxification ability in these regions. Compared to α-methyl hydroxylation, NNK and NNAL were more inclined to the α-methylene hydroxylation pathway. Synchronous pharmacokinetic results indicated that the metabolic activity of NNK in the brain was different from that in the blood. The mean α-hydroxylation ratio in the brain and blood was 0.037 and 0.161, respectively, which indicated poor metabolic activity of NNK in the central nervous system.


Asunto(s)
Nitrosaminas , Ratas , Animales , Cromatografía Líquida de Alta Presión , Nitrosaminas/metabolismo , Carcinógenos , Encéfalo/metabolismo
11.
Lipids Health Dis ; 22(1): 202, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001459

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is frequently linked to type 2 diabetes mellitus (T2DM), and both conditions exacerbate the progression of the other. However, there is currently no standardized treatment or drug for MAFLD. In this study, A MAFLD animal model through a high-fat diet (HFD) along with administration of streptozotocin (STZ), and palmitic acid (PA)-induced AML12 cells were treated by puerarin. The objective of this study was to assess the therapeutic effect of puerarin, a flavonoid substance that possesses various pharmacological properties, on MAFLD. The results showed that puerarin administration enhanced glucose tolerance and insulin sensitivity, while also mitigating liver dysfunction and hyperlipidemia in MAFLD mice. Moreover, puerarin attenuated oxidative stress levels and inflammation in the liver. Transmission electron microscopy and Western blot analysis indicated that puerarin inhibited ferroptosis in vivo. Further mechanistic investigations revealed that puerarin upregulated SIRT1 expression, increased nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels, and facilitated translocation into the nucleus. The protective effect of puerarin on PA-induced AML12 cells was diminished by the utilization of EX-527 (a SIRT1 inhibitor) and Nrf2 siRNA. Overall, the results demonstrate that puerarin ameliorates MAFLD by suppressing ferroptosis and inflammation via the SIRT1/Nrf2 signaling pathway. The results emphasize the possible medicinal application of puerarin for managing MAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ferroptosis , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Sirtuina 1/genética , Sirtuina 1/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Hígado/metabolismo , Inflamación/tratamiento farmacológico
12.
J Orthop Sci ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37500402

RESUMEN

BACKGROUND: Bone graft fusion is a major concern among surgeons after Anterior Cervical Discectomy and Fusion (ACDF) surgery as non-fusion may lead to further physical and drug therapies. METHODS: The related risk elements of non-fusion of bone graft in ACDF surgery were retrospectively assessed. Patients receiving ACDF operation in our hospital from January 2015 to December 2019 were retrospectively analyzed. According to the criteria, 107 study subjects were recruited with a total of 164 surgical segments. The general information of patients, bone graft materials, imaging parameters, and clinical efficacy was recorded. T-test, chi-square test and binary logistic regression evaluation were employed to explore the risk factors of bone graft nonunion. RESULTS: Low housefield unit (HU) value, diabetes, allogeneic bone, and hydroxyapatite (HA) artificial bone could be risk factors for bone graft fusion in ACDF surgery. Further multivariate analysis was performed and confirmed those related factors of bone graft non-fusion including low HU value (non-fusion rate: 32.53% [27/83], OR = 5.024, p = 0.025), diabetes (non-fusion rate: 53.33% [8/15], OR = 4.776, p = 0.031), allogeneic bone (18.57% [13/70], OR = 3.964, p = 0.046), and artificial bone (68.29% [28/41], OR = 50.550, p < 0.01). CONCLUSION: By looking at bone graft fusion, selecting autologous iliac bone is an ideal selection to avoid non-fusion of bone graft in ACDF. Diabetes was more important predictor of bone graft nonunion than low HU value. Larger sample size and longer follow-up are required to further confirm these findings in the future.

14.
Am J Emerg Med ; 54: 107-110, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35152118

RESUMEN

Data on the prognosis of patients treated with oral anticoagulation (OAC) prior to hospital admission for COVID-19 remains controversial and insufficient. Therefore, we endeavored to perform a systematic review and meta-analysis to evaluate the effect of chronic use of OAC prior to the diagnosis of COVID-19 on intensive care unit (ICU) admission and mortality. An electronic search of the Pubmed, Embase, Cochrane library databases was conducted. Meta-analysis and statistical analyses were completed with using the RevMan 5.3 and Stata 12.0. A total of 13 articles representing data from 1,266,231 participants were included in this study. The meta-analysis of unadjusted results showed no decrease in mortality (OR = 1.31, 95% CI: 0.99 to 1.73, P = 0.059) or ICU admission rate (OR = 0.71, 95% CI: 0.29 to 1.77, P = 0.46) in COVID-19 patients with prior OAC therapy at hospital admission compared to patients without prior use of OAC. Moreover, the meta-analysis of adjusted results showed no lower risk of mortality (OR = 1.08, 95% CI: 0.90 to 1.30, P = 0.415) or ICU admission (OR = 1.50, 95% CI: 0.72 to 3.12, P = 0.284) in patients with prior OAC use compared to patients without previous OAC use. In conclusion, the results of this study revealed that the use of OAC prior to hospital admission appeared to be ineffective in reducing the risk of intensive care need and mortality in COVID-19 patients. Randomized controlled trials are needed to evaluate and optimize the use of OAC in COVID-19 infection.


Asunto(s)
Anticoagulantes , COVID-19 , Administración Oral , Anticoagulantes/uso terapéutico , Humanos , Unidades de Cuidados Intensivos , Factores de Riesgo
15.
Build Environ ; 219: 109212, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35645452

RESUMEN

The Delta variant of SARS-CoV-2 has inflicted heavy burdens on healthcare systems globally, although direct evidence on the quantity of exhaled viral shedding from Delta cases is lacking. The literature remains inconclusive on whether existing public health guidance, based on earlier evidence of COVID-19, should respond differently to more infectious viral strains. This paper describes a study on an outbreak of the Delta variant of COVID-19 in an auditorium, where one person contracted the virus from three asymptomatic index cases sitting in a different row. Field inspections were conducted on the configuration of seating, building and ventilation systems. Numerical simulation was conducted to retrospectively assess the exhaled viral emission, decay, airborne dispersion, with a modified Wells-Riley equation used to calculate the inhalation exposure and disease infection risks at the seat level. Results support the airborne disease transmission. The viral emission rate for Delta cases was estimated at 31 quanta per hour, 30 times higher than those of the original variant. The high quantity of viral plume exhaled by delta cases can create a high risk zone nearby, which, for a mixing ventilation system, cannot be easily mitigated by raising mixing rates or introducing fresh air supply. Such risks can be reduced by wearing an N95 respirator, less so for social distancing. A displacement ventilation system, through which the air is supplied at the floor and returned from the ceiling, can reduce risks compared with a mixing system. The study has implications for ventilation guidelines and hygiene practices in light of more infectious viral strains of COVID-19.

16.
Toxicol Appl Pharmacol ; 414: 115420, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33503445

RESUMEN

As a VEGF-targeting agent, sorafenib has been used to treat a number of solid tumors but can easily lead to adverse vascular effects. To elucidate the underlying mechanism, rat mesenteric arteries were subjected to organ cultured in the presence of different concentrations of sorafenib (0, 3, 6 and 9 mg/L) with or without inhibitors (U0126, 10-5 M; SB203580, 10-5 M; SP200126, 10-5 M) of MAPK kinases, and then acetylcholine- or sodium nitroprusside-induced vasodilation and sarafotoxin 6c-induced vasoconstriction were monitored by a sensitive myograph. The NO synthetases, the nitrite levels, the endothelial marker CD31,the ETB and ETA receptors and the phosphorylation of MAPK kinases were studied. Next, rats were orally administrated by sorafenib for 4 weeks (7.5 and 15 mg/kg/day), and their blood pressure, plasma ET-1, the ETB and ETA receptors and the phosphorylation of MAPK kinases in the mesenteric arteries were investigated. The results showed that sorafenib impairs endothelium-dependent vasodilation due to decreased NO levels and the low expression of eNOS and iNOS. Weak staining for CD31 indicated that sorafenib induced endothelial damage. Moreover, sorafenib caused the upregulation of vasoconstrictive ETB receptors, the enhancement of ETB receptor-mediated vasoconstriction and the activation of JNK/MAPK. Blocking the JNK, ERK1/2 and p38/MAPK signaling pathways by using the inhibitors significantly abolished ETB receptor-mediated vasoconstriction. Furthermore, it was observed that the oral administration of sorafenib caused an increase in blood pressure and plasma ET-1, upregulation of the ETB receptor and the activation of JNK in the mesenteric arteries. In conclusion, sorafenib not only impairs endothelium-dependent vasodilatation but also enhances ETB receptor-mediated vasoconstriction, which may be the causal factors for hypertension and other adverse vascular effects in patients treated with sorafenib.


Asunto(s)
Inhibidores de la Angiogénesis/toxicidad , Endotelio Vascular/efectos de los fármacos , Hipertensión/inducido químicamente , Arteria Mesentérica Superior/efectos de los fármacos , Receptor de Endotelina B/metabolismo , Sorafenib/toxicidad , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Arteria Mesentérica Superior/metabolismo , Arteria Mesentérica Superior/fisiopatología , Óxido Nítrico/metabolismo , Ratas Sprague-Dawley , Receptor de Endotelina B/genética , Transducción de Señal , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Chemphyschem ; 22(12): 1193-1200, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33969587

RESUMEN

Solar energy can be stored via either an indirect route in which electricity is involved as an intermediate step, or a direct route that utilizes photogenerated charge carriers for direct solar energy conversion. In this study, we investigate the fundamental difference between the direct and indirect routes in solar energy conversion using a new photoelectrochemical energy storage cell (PESC) as a model device. This PESC centers on a liquid junction that utilizes CH3 NH3 PbI3 perovskite to drive photoelectrochemical reactions of Benzoquinone (BQ) and Ferrocene (Fc) redox species. The experimental studies show that the equilibrium redox potentials are 0.1 V and -0.78 V (vs Ag/AgNO3 ) for Fc+ /Fc and BQ/BQ.- , respectively, which would produce a theoretical open-circuit voltage of 0.88 V for the storage device. The physics-based computational analysis shows a relatively flat reaction rate distribution in the electrode for the indirect route; however, in the direct route the photoelectrochemical reaction rate is critically affected by electron concentration due to strong light absorption of the perovskite material, which has been shown to vary by at least 10-fold in the transverse direction across the photoelectrode. The drastic variation of reaction rate in the photoelectrode creates an electric field that is 7.5 times stronger than the bulk electrolyte, which causes the photo-converted reaction product (i. e., BQ.- ) to drift away from the photoelectrode thereby creating a constant reaction driving force. As a result, it has been shown that the intrinsic solar to chemical conversion (ISTC) efficiency improves by ∼40 % for the direct route compared to the indirect route at 0.05 mA/cm2 .

18.
Langmuir ; 37(36): 10657-10667, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34449220

RESUMEN

Bacterial infection and blockage are severe problems for polyurethane (PU) catheters and there is an urgent demand for surface-functionalized polyurethane. Herein, a cationic alternating copolymer comprising allyl-substituted ornithine and glycine (allyl-substituted poly(Orn-alter-Gly)) with abundant carbon-carbon double bond functional groups (C═C) is designed. Polyurethane is prepared with a large quantity of C═C groups (PU-D), and different amounts of allyl-substituted poly(Orn-alter-Gly) are grafted onto the PU-D surface (PU-D-2%AMPs and PU-D-20%AMPs) via the C═C functional groups. The chemical structures of the allyl-substituted poly(Orn-alter-Gly) and polyurethane samples (PU, PU-D, PU-D-2%AMPs, and PU-D-20%AMPs) are characterized and the results reveal that allyl-substituted poly(Orn-alter-Gly) is decorated on the polyurethane. PU-D-20%AMPs shows excellent antibacterial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus because of the high surface potential caused by cationic allyl-substituted poly(Orn-alter-Gly), and it also exhibits excellent long-term antibacterial activity and antibiofilm properties. PU-D-20%AMPs also has excellent antifouling properties because the cationic copolymer is fixed at multiple reactive sites, thus avoiding the formation of movable long chain brush. A strong surface hydration barrier is also formed to prevent adsorption of proteins and ions, and in vivo experiments reveal excellent biocompatibility. This flexible strategy to prepare dual-functional polyurethane surfaces with antibacterial and antifouling properties has large potential in biomedical implants.


Asunto(s)
Incrustaciones Biológicas , Poliuretanos , Antibacterianos/toxicidad , Incrustaciones Biológicas/prevención & control , Péptidos/farmacología , Poliuretanos/toxicidad , Staphylococcus aureus , Propiedades de Superficie
19.
J Cardiovasc Pharmacol ; 78(2): 247-252, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34139744

RESUMEN

ABSTRACT: CircRNA ACAP2 and miR-532 both promotes the apoptosis of cardiomyocytes, which contributes to myocardial infarction (MI). Therefore, ACAP2 and miR-532 may interact with each other to participate in MI. Plasma samples from both patients with MI (n = 65) and healthy controls (n = 65) were subjected to RNA extractions and real-time quantitative polymerase chain reaction to analyze the expression of ACAP2, mature miR-532, and premature miR-532. Correlations among them were analyzed by Pearson's correlation coefficient. Expression of both mature miR-532 and premature miR-532 in cardiomyocytes with ACAP2 overexpression was analyzed by real-time quantitative polymerase chain reaction to study the effects of ACAP2 overexpression on the maturation of miR-532. The role of ACAP2 and miR-532 in regulating the apoptosis of cardiomyocytes induced by hypoxia was analyzed by cell apoptosis assay. In this study, we found that ACAP2 and mature miR-532 were both upregulated in plasma from patients with MI. ACAP2 and mature miR-532 were inversely correlated, whereas ACAP2 and premature miR-532 were not significantly correlated. In cardiomyocytes, overexpression of ACAP2 increased the expression of mature miR-532, but not premature miR-532. Cell apoptosis analysis showed that ACAP2 and miR-532 overexpression promoted the apoptosis of cardiomyocytes induced by hypoxia treatment. In addition, miR-532 inhibitor reduced the effects of ACAP2 overexpression. ACAP2 is overexpressed in MI and may promote the maturation of miR-532 to induce the apoptosis of cardiomyocyte.


Asunto(s)
Apoptosis/genética , Proteínas de la Membrana , MicroARNs , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Hipoxia/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular , Regulación hacia Arriba
20.
Ren Fail ; 43(1): 1394-1407, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629011

RESUMEN

BACKGROUND: New evidence from studies on risk factors for mortality in hemodialysis (HD) patients with COVID-19 became available. We aimed to review the clinical risk factors for fatal outcomes in these patients. METHODS: We performed meta-analysis using the PubMed, EMBASE, and Cochrane databases. A fixed- or random-effects model was used for calculating heterogeneity. We used contour-enhanced funnel plot and Egger's tests to assess potential publication bias. RESULTS: Twenty-one studies were included. The proportion of males was lower in the survivor group than in the non-survivor group (OR = 0.75, 95% CI [0.61, 0.94]). The proportion of respiratory diseases was significantly lower in the survivor group than in the non-survivor group (OR = 0.42, 95% CI [0.29, 0.60]). The proportion of patients with fever, cough, and dyspnea was significantly lower in the survivor group (fever: OR = 0.53, 95% CI [0.31, 0.92]; cough: OR = 0.50, 95% CI [0.38, 0.65]; dyspnea: OR = 0.25, 95% CI [0.14, 0.47]) than in the non-survivor group. Compared with the non-survivor group, the survivor group had higher albumin and platelet levels and lower leucocyte counts. CONCLUSIONS: Male patients might have a higher risk of developing severe COVID-19. Comorbidities, such as respiratory diseases could also greatly influence the clinical prognosis of COVID-19. Clinical features, such as fever, dyspnea, cough, and abnormal platelet, leucocyte, and albumin levels, could imply eventual death. Our findings will help clinicians identify markers for the detection of high mortality risk in HD patients at an early stage of COVID-19.


Asunto(s)
COVID-19/mortalidad , Fallo Renal Crónico/mortalidad , COVID-19/complicaciones , Comorbilidad , Humanos , Fallo Renal Crónico/complicaciones , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA