Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(5): e2207091120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689650

RESUMEN

Galectin-4, a member of the galectin family of animal glycan-binding proteins (GBPs), is specifically expressed in gastrointestinal epithelial cells and is known to be able to bind microbes. However, its function in host-gut microbe interactions remains unknown. Here, we show that intracellular galectin-4 in intestinal epithelial cells (IECs) coats cytosolic Salmonella enterica serovar Worthington and induces the formation of bacterial chains and aggregates. Galectin-4 enchains bacteria during their growth by binding to the O-antigen of lipopolysaccharides. Furthermore, the binding of galectin-4 to bacterial surfaces restricts intracellular bacterial motility. Galectin-4 enhances caspase-1 activation and mature IL-18 production in infected IECs especially when autophagy is inhibited. Finally, orally administered S. enterica serovar Worthington, which is recognized by human galectin-4 but not mouse galectin-4, translocated from the intestines to mesenteric lymph nodes less effectively in human galectin-4-transgenic mice than in littermate controls. Our results suggest that galectin-4 plays an important role in host-gut microbe interactions and prevents the dissemination of pathogens. The results of the study revealed a novel mechanism of host-microbe interactions that involves the direct binding of cytosolic lectins to glycans on intracellular microbes.


Asunto(s)
Galectina 4 , Inflamasomas , Animales , Ratones , Humanos , Inflamasomas/metabolismo , Galectina 4/metabolismo , Células Epiteliales/metabolismo , Bacterias , Antígenos O/metabolismo
2.
Kidney Int ; 106(4): 658-670, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084257

RESUMEN

IgA nephropathy (IgAN) is the most common type of glomerulonephritis that frequently progresses to kidney failure. However, the molecular pathogenesis underlying IgAN remains largely unknown. Here, we investigated the role of galectin-3 (Gal-3), a galactoside-binding protein in IgAN pathogenesis, and showed that Gal-3 expression by the kidney was significantly enhanced in patients with IgAN. In both TEPC-15 hybridoma-derived IgA-induced, passive, and spontaneous "grouped" ddY IgAN models, Gal-3 expression was clearly increased with disease severity in the glomeruli, peri-glomerular regions, and some kidney tubules. Gal-3 knockout (KO) in the passive IgAN model had significantly improved proteinuria, kidney function and reduced severity of kidney pathology, including neutrophil infiltration and decreased differentiation of Th17 cells from kidney-draining lymph nodes, despite increased percentages of regulatory T cells. Gal-3 KO also inhibited the NLRP3 inflammasome, yet it enhanced autophagy and improved kidney inflammation and fibrosis. Moreover, administration of 6-de-O-sulfated, N-acetylated low-molecular-weight heparin, a competitive Gal-3 binding inhibitor, restored kidney function and improved kidney lesions in passive IgAN mice. Thus, our results suggest that Gal-3 is critically involved in IgAN pathogenesis by activating the NLRP3 inflammasome and promoting Th17 cell differentiation. Hence, targeting Gal-3 action may represent a new therapeutic strategy for treatment of this kidney disease.


Asunto(s)
Modelos Animales de Enfermedad , Galectina 3 , Glomerulonefritis por IGA , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Células Th17 , Glomerulonefritis por IGA/patología , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/genética , Animales , Galectina 3/metabolismo , Galectina 3/genética , Galectina 3/antagonistas & inhibidores , Humanos , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Masculino , Femenino , Inflamasomas/metabolismo , Inflamasomas/inmunología , Autofagia/efectos de los fármacos , Fibrosis , Linfocitos T Reguladores/inmunología , Diferenciación Celular , Galectinas/genética , Galectinas/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Ratones Endogámicos C57BL , Glomérulos Renales/patología , Glomérulos Renales/inmunología , Inmunoglobulina A/metabolismo , Inmunoglobulina A/inmunología
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301890

RESUMEN

Cytosolic lipopolysaccharides (LPSs) bind directly to caspase-4/5/11 through their lipid A moiety, inducing inflammatory caspase oligomerization and activation, which is identified as the noncanonical inflammasome pathway. Galectins, ß-galactoside-binding proteins, bind to various gram-negative bacterial LPS, which display ß-galactoside-containing polysaccharide chains. Galectins are mainly present intracellularly, but their interactions with cytosolic microbial glycans have not been investigated. We report that in cell-free systems, galectin-3 augments the LPS-induced assembly of caspase-4/11 oligomers, leading to increased caspase-4/11 activation. Its carboxyl-terminal carbohydrate-recognition domain is essential for this effect, and its N-terminal domain, which contributes to the self-association property of the protein, is also critical, suggesting that this promoting effect is dependent on the functional multivalency of galectin-3. Moreover, galectin-3 enhances intracellular LPS-induced caspase-4/11 oligomerization and activation, as well as gasdermin D cleavage in human embryonic kidney (HEK) 293T cells, and it additionally promotes interleukin-1ß production and pyroptotic death in macrophages. Galectin-3 also promotes caspase-11 activation and gasdermin D cleavage in macrophages treated with outer membrane vesicles, which are known to be taken up by cells and release LPSs into the cytosol. Coimmunoprecipitation confirmed that galectin-3 associates with caspase-11 after intracellular delivery of LPSs. Immunofluorescence staining revealed colocalization of LPSs, galectin-3, and caspase-11 independent of host N-glycans. Thus, we conclude that galectin-3 amplifies caspase-4/11 oligomerization and activation through LPS glycan binding, resulting in more intense pyroptosis-a critical mechanism of host resistance against bacterial infection that may provide opportunities for new therapeutic interventions.


Asunto(s)
Caspasas/metabolismo , Galectina 3/metabolismo , Inflamasomas/inmunología , Inflamación/inmunología , Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Animales , Citosol/metabolismo , Galectina 3/genética , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Piroptosis
4.
Glycoconj J ; 40(3): 295-303, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37052731

RESUMEN

Sialylation is an important terminal modification of glycoconjugates that mediate diverse functions in physiology and disease. In this review we focus on how altered cell surface sialylation status is sensed by cytosolic galectins when the integrity of intracellular vesicles or organelles is compromised to expose luminal glycans to the cytosolic milieu, and how this impacts galectin-mediated cellular responses. In addition, we discuss the roles of mammalian sialidases on the cell surface, in the organelle lumen and cytosol, and raise the possibility that intracellular glycan processing may be critical in controlling various galectin-mediated responses when cells encounter stress.


Asunto(s)
Galectinas , Polisacáridos , Animales , Galectinas/metabolismo , Citosol/metabolismo , Polisacáridos/metabolismo , Glicoconjugados/metabolismo , Orgánulos , Mamíferos/metabolismo
5.
J Biomed Sci ; 30(1): 14, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823664

RESUMEN

BACKGROUND: Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the ß-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS: We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS: Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION: We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Proteínas Virales/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulación hacia Arriba , Gripe Humana/genética , ARN Viral/metabolismo , Virus de la Influenza A/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral/genética
6.
Glycobiology ; 32(1): 73-82, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-34791227

RESUMEN

Enhanced sebocyte proliferation is associated with the pathogenesis of human skin diseases related to sebaceous gland hyperfunction and androgens, which are known to induce sebocyte proliferation, are key mediators of this process. Galectin-12, a member of the ß-galactoside-binding lectin family that is preferentially expressed by adipocytes and functions as an intrinsic negative regulator of lipolysis, has been shown to be expressed by human sebocytes. In this study, we identified galectin-12 as an important intracellular regulator of sebocyte proliferation. Galectin-12 knockdown in the human SZ95 sebocyte line suppressed cell proliferation, and its overexpression promoted cell cycle progression. Inhibition of galectin-12 expression reduced the androgen-induced SZ95 sebocyte proliferation and growth of sebaceous glands in mice, respectively. The mRNA expression of the key cell cycle regulators cyclin A1 (CCNA1) and cyclin-dependent kinase 2CDK2 was reduced in galectin-12 knockdown SZ95 sebocytes, suggesting a pathway of galectin-12 regulation of sebocyte proliferation. Further, galectin-12 enhanced peroxisome proliferator-activated receptor gamma (PPARγ) expression and transcriptional activity in SZ95 sebocytes, consistent with our previous studies in adipocytes. Rosiglitazone, a PPARγ ligand, induced CCNA1 levels, suggesting that galectin-12 may upregulate CCNA1 expression via PPARγ. Our findings suggest the possibility of targeting galectin-12 to treat human sebaceous gland hyperfunction and androgen-associated skin diseases.


Asunto(s)
Ciclina A1 , Glándulas Sebáceas , Animales , Ciclo Celular/genética , Proliferación Celular , Ciclina A1/metabolismo , Quinasa 2 Dependiente de la Ciclina , Galectinas/genética , Galectinas/metabolismo , Ratones , Glándulas Sebáceas/metabolismo
7.
Glycobiology ; 32(9): 760-777, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35789267

RESUMEN

Galectin-3 (GAL3) is a ß-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.


Asunto(s)
Infecciones por VIH , VIH-1 , Proteínas Sanguíneas , Linfocitos T CD4-Positivos/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Humanos , Lípidos de la Membrana/análisis , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/química
8.
Small ; 18(4): e2106462, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34862733

RESUMEN

Multi-resonance thermally activated delayed fluorescence (MR-TADF) material, which possesses the ability to achieve narrowband emission in organic light-emitting diodes (OLEDs), is of significant importance for wide color gamut and high-resolution display applications. To date, MR-TADF material with narrow full width at half-maximum (FWHM) below 0.14 eV still remains a great challenge. Herein, through peripheral protection of MR framework by phenyl derivatives, four efficient narrowband MR-TADF emitters are successfully designed and synthesized. The introduction of peripheral phenyl-based moieties via a single bond significantly suppresses the high-frequency stretching vibrations and reduces the reorganization energies, accordingly deriving the resulting molecules with small FWMH values around 20 nm/0.11 eV and fast radiative decay rates exceeding 108 s-1 . The corresponding green OLED based on TPh-BN realizes excellent performance with the maximum external quantum efficiency (EQE) up to 28.9% without utilizing any sensitizing host and a relatively narrow FWHM of 0.14 eV (28 nm), which is smaller than the reported green MR-TADF molecules in current literatures. Especially, the devices show significantly reduced efficiency roll-off and relatively long operational lifetimes among the sensitizer-free MR-TADF devices. These results clearly indicate the promise of this design strategy for highly efficient OLEDs with ultra-high color purity.

9.
Arterioscler Thromb Vasc Biol ; 41(1): 331-345, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147994

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a vascular degenerative disease causing sudden rupture of aorta and significant mortality in elders. Nevertheless, no prognostic and therapeutic target is available for disease management. Gal-1 (galectin-1) is a ß-galactoside-binding lectin constitutively expressed in vasculature with roles in maintaining vascular homeostasis. This study aims to investigate the potential involvement of Gal-1 in AAA progression. Approach and Results: Gal-1 was significantly elevated in circulation and aortic tissues of Ang II (angiotensin II)-infused apoE-deficient mice developing AAA. Gal-1 deficiency reduced incidence and severity of AAA with lower expression of aortic MMPs (matrix metalloproteases) and proinflammatory cytokines. TNFα (tumor necrosis factor alpha) induced Gal-1 expression in cultured vascular smooth muscle cells and adventitial fibroblasts. Gal-1 deletion enhanced TNFα-induced MMP9 expression in fibroblasts but not vascular smooth muscle cells. Cysteinyl-labeling assay demonstrated that aortic Gal-1 exhibited susceptibility to oxidation in vivo. Recombinant oxidized Gal-1 induced expression of MMP9 and inflammatory cytokines to various extents in macrophages, vascular smooth muscle cells, and fibroblasts through activation of MAP (mitogen-activated protein) kinase signaling. Clinically, serum MMP9 level was significantly higher in both patients with AAA and coronary artery disease than in control subjects, whereas serum Gal-1 level was elevated in patients with AAA but not coronary artery disease when compared with controls. CONCLUSIONS: Gal-1 is highly induced and contributes to AAA by enhancing matrix degradation activity and inflammatory responses in experimental model. The pathological link between Gal-1 and AAA is also observed in human patients. These findings support the potential of Gal-1 as a disease biomarker and therapeutic target of AAA.


Asunto(s)
Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Aortitis/metabolismo , Galectina 1/metabolismo , Remodelación Vascular , Adventicia/metabolismo , Adventicia/patología , Angiotensina II , Animales , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/patología , Aortitis/inducido químicamente , Aortitis/patología , Estudios de Casos y Controles , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Galectina 1/sangre , Galectina 1/deficiencia , Galectina 1/genética , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Transducción de Señal , Regulación hacia Arriba
10.
J Immunol ; 204(5): 1158-1172, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969388

RESUMEN

Galectin-9 is a risk gene in inflammatory bowel disease. By transcriptomic analyses of ileal biopsies and PBMCs from inflammatory bowel disease patients, we identified a positive correlation between galectin-9 expression and colitis severity. We observed that galectin-9-deficient T cells were less able to induce T cell-mediated colitis. However, several mouse-based studies reported that galectin-9 treatment induces T cell apoptosis and ameliorates autoimmune diseases in an exogenously modulated manner, indicating a complicated regulation of galectin-9 in T cells. We found that galectin-9 is expressed mainly inside T cells, and its secreted form is barely detected under physiological conditions. Endogenous galectin-9 was recruited to immune synapses upon T cell activation. Moreover, proximal TCR signaling was impaired in galectin-9-deficient T cells, and proliferation of these cells was decreased through an intracellularly modulated manner. Th17 cell differentiation was downregulated in galectin-9-deficient T cells, and this impairment can be rescued by strong TCR signaling. Taken together, these findings suggest that intracellular galectin-9 is a positive regulator of T cell activation and modulates the pathogenesis of autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Diferenciación Celular/inmunología , Galectinas/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Células Th17/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Diferenciación Celular/genética , Galectinas/genética , Ratones , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal/genética , Células Th17/patología
11.
Cell Mol Life Sci ; 78(7): 3621-3635, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33507326

RESUMEN

Galectin 3 is a multifunctional lectin implicated in cellular proliferation, differentiation, adhesion, and apoptosis. This lectin is broadly expressed in testicular somatic cells and germ cells, and is upregulated during testicular development. Since the role of galectin 3 in testicular function remains elusive, we aimed to characterize the role of galectin 3 in testicular physiology. We found that galectin 3 transgenic mice (Lgals3-/-) exhibited significantly decreased testicular weight in adulthood compared to controls. The transgenic mice also exhibited a delay to the first wave of spermatogenesis, a decrease in the number of germ cells at postnatal day 5 (P5) and P15, and defective Sertoli cell maturation. Mechanistically, we found that Insulin-like-3 (a Leydig cell marker) and enzymes involved in steroid biosynthesis were significantly upregulated in adult Lgals3-/- testes. These observations were accompanied by increased serum testosterone levels. To determine the underlying causes of the testicular atrophy, we monitored cellular apoptosis. Indeed, adult Lgals3-/- testicular cells exhibited an elevated apoptosis rate that is likely driven by downregulated Bcl-2 and upregulated Bax and Bak expression, molecules responsible for live/death cell balance. Moreover, the percentage of testicular macrophages within CD45+ cells was decreased in Lgals3-/- mice. These data suggest that galectin 3 regulates spermatogenesis initiation and Sertoli cell maturation in part, by preventing germ cells from undergoing apoptosis and regulating testosterone biosynthesis. Going forward, understanding the role of galectin 3 in testicular physiology will add important insights into the factors governing the development of germ cells and steroidogenesis and delineate novel biomarkers of testicular function.


Asunto(s)
Apoptosis , Galectina 3/fisiología , Células Intersticiales del Testículo/patología , Células de Sertoli/patología , Espermatogénesis , Espermatozoides/patología , Animales , Hormona Folículo Estimulante/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Testosterona/metabolismo
12.
Angew Chem Int Ed Engl ; 61(14): e202116927, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35104385

RESUMEN

Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show great potentials for high color purity organic light-emitting diodes (OLEDs). However, the simultaneous realization of high photoluminescence quantum yield (PLQY) and high reverse intersystem crossing rate (kRISC ) is still a formidable challenge. Herein, a novel asymmetric MR-TADF emitter (2Cz-PTZ-BN) is designed that fully inherits the high PLQY and large kRISC values of the properly selected parent molecules. The resonating extended π-skeleton with peripheral protection can achieve a high PLQY of 96 % and a fast kRISC of above 1.0×105  s-1 , and boost the performance of corresponding pure green devices with an outstanding external quantum efficiency (EQE) of up to 32.8 % without utilizing any sensitizing hosts. Remarkably, the device sufficiently maintains a high EQE exceeding 23 % at a high luminance of 1000 cd m-2 , representing the highest value for reported green MR-TADF materials at the same luminescence.

13.
Glycobiology ; 31(9): 1230-1238, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34132764

RESUMEN

Glycosylation is important for biological functions of proteins and greatly affected by diseases. Exploring the glycosylation profile of the protein-specific glycosylation and/or the site-specific glycosylation may help understand disease etiology, differentiate diseases and ultimately develop therapeutics. Patients with multiple sclerosis (MS) and patients with neuromyelitis optica spectrum disorder (NMOSD) are sometimes difficult to differentiate due to the similarity in their clinical symptoms. The disease-related glycosylation profiles of MS and NMOSD have not yet been well studied. Here, we analyzed site-specific glycan profiles of serum proteins of these patients by using a recently developed mass spectrometry technique. A total of 286 glycopeptides from 49 serum glycoproteins were quantified and compared between healthy controls (n = 6), remitting MS (n = 45) and remitting NMOSD (n = 23) patients. Significant differences in the levels of site-specific N-glycans on inflammation-associated components [IgM, IgG1, IgG2, complement components 8b (CO8B) and attractin], central nerve system-damage-related serum proteins [apolipoprotein D (APOD), alpha-1-antitrypsin, plasma kallikrein and ADAMTS-like protein 3] were observed among three study groups. We furthered demonstrated that site-specific N-glycans on APOD on site 98, CO8B on sites 243 and 553 are potential markers to differentiate MS from NMOSD with an area under receiver operating curve value > 0.75. All these observations indicate that remitting MS or NMOSD patients possess a unique disease-associated glyco-signature in their serum proteins. We conclude that monitoring one's serum protein glycan profile using this high-throughput analysis may provide an additional diagnostic criterion for differentiating diseases, monitoring disease status and estimating response-to-treatment effect.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Biomarcadores , Humanos , Inmunoglobulina G , Esclerosis Múltiple/diagnóstico , Neuromielitis Óptica/diagnóstico , Proyectos Piloto
14.
PLoS Pathog ; 15(11): e1008096, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31693704

RESUMEN

Candida albicans is one of the top leading causes of healthcare-associated bloodstream infection. Neutrophil extracellular traps (NET) are known to capture and kill pathogens. It is reported that opsonized C. albicans-triggered NETosis is NADPH oxidase-dependent. We discovered a NADPH oxidase-independent NETosis pathway in neutrophil response to unopsonized C. albicans. While CR3 engagement with opsonized C. albicans triggered NET, dectin-2 recognized unopsonized C. albicans and mediated NET formation. Engagement of dectin-2 activated the downstream Syk-Ca2+-PKCδ-protein arginine deiminase 4 (PAD4) signaling pathway which modulated nuclear translocation of neutrophil elastase (NE), histone citrullination and NETosis. In a C. albicans peritonitis model we observed Ki67+Ly6G+ NETotic cells in the peritoneal exudate and mesenteric tissues within 3 h of infection. Treatment with PAD4 inhibitor GSK484 or dectin-2 deficiency reduced % Ki67+Ly6G+ cells and the intensity of Ki67 in peritoneal neutrophils. Employing DNA digestion enzyme micrococcal nuclease, GSK484 as well as dectin-2-deficient mice, we further showed that dectin-2-mediated PAD4-dependent NET formation in vivo restrained the spread of C. albicans from the peritoneal cavity to kidney. Taken together, this study reveals that unopsonized C. albicans evokes NADPH oxidase-independent NETosis through dectin-2 and its downstream signaling pathway and dectin-2-mediated NET helps restrain fungal dissemination.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Trampas Extracelulares/inmunología , Riñón/inmunología , Lectinas Tipo C/metabolismo , NADPH Oxidasas/metabolismo , Peritoneo/inmunología , Animales , Candidiasis/metabolismo , Candidiasis/microbiología , Riñón/metabolismo , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/genética , Peritoneo/metabolismo , Fagocitosis , Especies Reactivas de Oxígeno , Transducción de Señal
15.
Chemistry ; 27(55): 13828-13839, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34291514

RESUMEN

Achieving high efficiency at high luminance is one of the most important prerequisites towards practical application of any kind of light-emitting diode (LED). Herein, we report highly emissive organic fluorescent molecules based on phenanthroimidazole-benzothiadiazole derivatives capable of maintaining high external quantum efficiency (EQE) at high luminance enabled by triplet-triplet fusion (TTF) in doped organic LEDs. The PIBzP-, PIBzPCN-, and PIBzTPA-based devices showed EQEs of 8.27, 9.15, and 8.64 %, respectively, at luminance of higher than 1000 cd m-2 , with little efficiency roll-off.

16.
FASEB J ; 34(7): 9802-9813, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32501643

RESUMEN

Low-density lipoprotein (LDL) is heterogeneous, composed of particles with variable atherogenicity. Electronegative L5 LDL exhibits atherogenic properties in vitro and in vivo, and its levels are elevated in patients with increased cardiovascular risk. Apolipoprotein E (APOE) content is increased in L5, but what role APOE plays in L5 function remains unclear. Here, we characterized the contributions of APOE posttranslational modification to L5's atherogenicity. Using two-dimensional electrophoresis and liquid chromatography-mass spectrometry, we studied APOE's posttranslational modification in L5 from human plasma. APOE structures with various glycan residues were predicted. Molecular docking and molecular dynamics simulation were performed to examine the functional changes of APOE resulting from glycosylation. We also examined the effects of L5 deglycosylation on endothelial cell apoptosis. The glycan sequence N-acetylgalactosamine, galactose, and sialic acid was consistently expressed on serine 94, threonine 194, and threonine 289 of APOE in L5 and was predicted to contribute to L5's negative surface charge and hydrophilicity. The electrostatic force between the negatively charged sialic acid-containing glycan residue of APOE and positively charged amino acids at the receptor-binding area suggested that glycosylation interferes with APOE's attraction to receptors, lipid-binding ability, and lipid transportation and metabolism functions. Importantly, L5 containing glycosylated APOE induced apoptosis in cultured endothelial cells through lectin-like oxidized LDL receptor-1 (LOX-1) signaling, and glycosylation removal from L5 attenuated L5-induced apoptosis. APOE glycosylation may contribute to the atherogenicity of L5 and be a useful biomarker for rapidly quantifying L5.


Asunto(s)
Apolipoproteínas E/química , Aterosclerosis/patología , Células Endoteliales/patología , Lipoproteínas LDL/efectos adversos , Síndrome Metabólico/fisiopatología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Apolipoproteínas E/metabolismo , Apoptosis , Aterosclerosis/inducido químicamente , Estudios de Casos y Controles , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Glicosilación , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Transducción de Señal
17.
FASEB J ; 34(1): 735-753, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914594

RESUMEN

Upon overnutrition, adipocytes activate a homeostatic program to adjust anabolic pressure. An inflammatory response enables adipose tissue (AT) expansion with concomitant enlargement of its capillary network, and reduces energy storage by increasing insulin resistance. Galectin-12 (Gal-12), an endogenous lectin preferentially expressed in AT, plays a key role in adipocyte differentiation, lipolysis, and glucose homeostasis. Here, we reveal biochemical and biophysical determinants of Gal-12 structure, including its preferential recognition of 3-fucosylated structures, a unique feature among members of the galectin family. Furthermore, we identify a previously unanticipated role for this lectin in the regulation of angiogenesis within AT. Gal-12 showed preferential localization within the inner side of lipid droplets, and its expression was upregulated under hypoxic conditions. Through glycosylation-dependent binding to endothelial cells, Gal-12 promoted in vitro angiogenesis. Moreover, analysis of in vivo AT vasculature showed reduced vascular networks in Gal-12-deficient (Lgals12-/-) compared to wild-type mice, supporting a role for this lectin in AT angiogenesis. In conclusion, this study unveils biochemical, topological, and functional features of a hypoxia-regulated galectin in AT, which modulates endothelial cell function through recognition of 3-fucosylated glycans. Thus, glycosylation-dependent programs may control AT homeostasis by modulating endothelial cell biology with critical implications in metabolic disorders and inflammation.


Asunto(s)
Adipocitos/metabolismo , Células Endoteliales/metabolismo , Galectinas/metabolismo , Neovascularización Patológica/metabolismo , Tejido Adiposo/metabolismo , Animales , Fenómenos Fisiológicos Celulares/fisiología , Resistencia a la Insulina/fisiología , Gotas Lipídicas/metabolismo , Lipólisis/fisiología , Ratones Noqueados , Polisacáridos/metabolismo
18.
J Biomed Sci ; 28(1): 16, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663512

RESUMEN

Galectins are animal lectins that recognize carbohydrates and play important roles in maintaining cellular homeostasis. Recent studies have indicated that under a variety of challenges, intracellular galectins bind to host glycans displayed on damaged endocytic vesicles and accumulate around these damaged organelles. Accumulated galectins then engage cellular proteins and subsequently control cellular responses, such as autophagy. In this review, we have summarized the stimuli that lead to the accumulation of galectins, the molecular mechanisms of galectin accumulation, and galectin-mediated cellular responses, and elaborate on the differential regulatory effects among galectins.


Asunto(s)
Autofagia , Galectinas/metabolismo , Polisacáridos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Humanos
19.
Anal Chem ; 92(23): 15297-15305, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33185440

RESUMEN

Oxidative stress is a state of stress injury, which leads to the pathogenesis of most neurodegenerative diseases. Moreover, this is also one of the main reasons for the loss of dopaminergic neurons and the abnormal content of dopamine (DA). In the past decades, a number of studies have found that acetaminophen (AP) is metabolized and distributed in the brain when it is used as a neuroprotective compound. In this context, we proposed an electrochemical sensor based on 9-(4-(10-phenylanthracen-9-yl)phenyl)-9H-carbazole with the goal of diagnosing these two drugs in the body. Carbazole groups can easily be formed into large π-conjugated systems by electropolymerization. The introduction of anthracene exactly combined the carbazole group to establish an efficient electron donor-acceptor pattern, which enhanced π-π interaction with the electrode surface and charge transporting ability. The diagnostic platform showed good sensing activity toward the oxidation of DA and AP. The detection range for DA and AP is from 0.2 to 300 µM and from 0.2 to 400 µM, respectively. The simultaneous detection range is from 0.5 to 250 µM, which is wider than most reports. After a series of electrochemical assessments were determined, the sensor was finally developed to the analysis of pharmaceutical and human serum, displaying a meaningful potential in clinical evaluation.


Asunto(s)
Teoría Funcional de la Densidad , Electroquímica/métodos , Acetaminofén/análisis , Acetaminofén/sangre , Acetaminofén/química , Dopamina/análisis , Dopamina/sangre , Dopamina/química , Electroquímica/instrumentación , Electrodos , Humanos , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Polimerizacion
20.
J Biomed Sci ; 27(1): 24, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31937306

RESUMEN

BACKGROUND: Galectin-9 is a ß-galactoside-binding protein with two carbohydrate recognition domains. Recent studies have revealed that galectin-9 regulates cellular biological reactions and plays a pivotal role in fibrosis. The aim of this study was to determine the role of galectin-9 in the pathogenesis of bleomycin-induced systemic sclerosis (SSc). METHODS: Human galectin-9 levels in the serum of patients with SSc and mouse sera galectin-9 levels were measured by a Bio-Plex immunoassay and enzyme-linked immunosorbent assay. Lung fibrosis was induced using bleomycin in galectin-9 wild-type and knockout mice. The effects of galectin-9 on the fibrosis markers and signaling molecules in the mouse lung tissues and primary lung fibroblast cells were assessed with western blotting and quantitative polymerase chain reaction. RESULTS: Galectin-9 levels in the serum were significantly higher (9-fold) in patients compared to those of healthy individuals. Galectin-9 deficiency in mice prominently ameliorated epithelial proliferation, collagen I accumulation, and α-smooth muscle actin expression. In addition, the galectin-9 knockout mice showed reduced protein expression levels of fibrosis markers such as Smad2/3, connective tissue growth factor, and endothelin-1. Differences between the wild-type and knockout groups were also observed in the AKT, mitogen-activated protein kinase, and c-Jun N-terminal kinase signaling pathways. Galectin-9 deficiency decreased the signal activation induced by transforming growth factor-beta in mouse primary fibroblasts, which plays a critical role in fibroblast activation and aberrant catabolism of the extracellular matrix. CONCLUSIONS: Our findings suggest that lack of galectin-9 protects against bleomycin-induced SSc. Moreover, galectin-9 might be involved in regulating the progression of fibrosis in multiple pathways.


Asunto(s)
Galectinas/sangre , Galectinas/deficiencia , Fibrosis Pulmonar/tratamiento farmacológico , Esclerodermia Sistémica/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Bleomicina/toxicidad , Fibroblastos/efectos de los fármacos , Pulmón/efectos de los fármacos , Ratones , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Esclerodermia Sistémica/inducido químicamente , Transducción de Señal , Proteínas Smad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA