Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 314(2): H236-H245, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971840

RESUMEN

The physiological role of cardiac late Na+ current ( INa) has not been well described. In this study, we tested the hypothesis that selective inhibition of physiological late INa abbreviates the normal action potential (AP) duration (APD) and counteracts the prolongation of APD and arrhythmic activities caused by inhibition of the delayed rectifier K+ current ( IKr). The effects of GS-458967 (GS967) on the physiological late INa and APs in rabbit isolated ventricular myocytes and on the monophasic APs and arrhythmias in rabbit isolated perfused hearts were determined. In ventricular myocytes, GS967 and, for comparison, tetrodotoxin concentration dependently decreased the physiological late INa with IC50 values of 0.5 and 1.9 µM, respectively, and significantly shortened the APD measured at 90% repolarization (APD90). A strong correlation between inhibition of the physiological late INa and shortening of APD by GS967 or tetrodotoxin ( R2 of 0.96 and 0.97, respectively) was observed. Pretreatment of isolated myocytes or hearts with GS967 (1 µM) significantly shortened APD90 and monophasic APD90 and prevented the prolongation and associated arrhythmias caused by the IKr inhibitor E4031 (1 µM). In conclusion, selective inhibition of physiological late INa shortens the APD, stabilizes ventricular repolarization, and decreases the proarrhythmic potential of pharmacological agents that slow ventricular repolarization. Thus, selective inhibition of late INa may constitute a generalizable approach to stabilize ventricular repolarization and suppress arrhythmogenicity associated with conditions whereby AP or QT intervals are prolonged. NEW & NOTEWORTHY The contribution of physiological late Na+ current in action potential duration (APD) of rabbit cardiac myocytes was estimated. The inhibition of this current prevented the prolongation of APD in rabbit cardiac myocytes, the prolongation of monophasic APD, and generation of arrhythmias in rabbit isolated hearts caused by delayed rectifier K+ current inhibition.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Piridinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Triazoles/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Técnicas In Vitro , Preparación de Corazón Aislado , Cinética , Miocitos Cardíacos/metabolismo , Piperidinas , Conejos , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología
2.
J Cardiovasc Electrophysiol ; 26(3): 329-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25346368

RESUMEN

INTRODUCTION: Ventricular rate during atrial fibrillation (AF) can be reduced by slowing atrioventricular (AV) node conduction and/or by decreasing dominant frequency of AF. We investigated whether combined administration of ivabradine and ranolazine reduces ventricular rate during AF. METHODS AND RESULTS: Ivabradine (maximum clinical dose, 0.25 mg/kg, and 0.10 mg/kg, i.v.) and ranolazine (2.4 mg/kg, i.v., bolus followed by 0.135 mg/kg/min) were studied in an anesthetized pig (N = 16) model of AF. Combined administration of 0.25 mg/kg ivabradine with ranolazine reduced ventricular rate during AF by 51.9 ± 9.7 beats/min (23%, P = 0.017) and dominant frequency of AF by 2.8 ± 0.5 Hz (32%, P = 0.005). It increased PR (P = 0.0002, P = 0.0007) and A-H intervals (P = 0.047, P = 0.002) during pacing at 130 and 180 beats/min, respectively, to a greater degree than additive effects of single agents. Combined administration of 0.1 mg/kg ivabradine with ranolazine exceeded additive effects of single agents on A-H intervals and dominant frequency of AF. Moreover, ranolazine potentiated low-dose ivabradine's reduction in ventricular rate, as combined administration more than doubled effects of the higher ivabradine dose alone and was similar to the combination with the higher dose. Neither drug nor their combination affected contractility (left ventricular [LV] dP/dt), QT or His-ventricular (H-V) intervals, or mean arterial pressure during sinus rhythm or AF. CONCLUSION: Combined administration of ivabradine and ranolazine at clinically safe levels decreases ventricular rate during AF by reducing AV node conduction and AF dominant frequency without QT prolongation or depression in contractility. Targeting these actions offers intrinsic advantages over conventional nodal agents, which can reduce contractility.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Benzazepinas/administración & dosificación , Fármacos Cardiovasculares/administración & dosificación , Frecuencia Cardíaca/efectos de los fármacos , Ranolazina/administración & dosificación , Animales , Fibrilación Atrial/fisiopatología , Quimioterapia Combinada , Cobayas , Frecuencia Cardíaca/fisiología , Ivabradina , Masculino , Porcinos
3.
J Cardiovasc Pharmacol ; 63(6): 512-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24406487

RESUMEN

Inhibition of cardiac late Na(+) current (I(Na,L)) decreases sodium-dependent calcium overload in diseased hearts. Because INa,L is small in the absence of disease, its inhibition is not expected to significantly alter function of the normal heart. To test this hypothesis, we determined the effects of GS-458967 (GS967), a novel selective inhibitor of I(Na,L) (IC(50) = 0.13 µM), on cardiac function and hemodynamics. The bradycardic agent ivabradine and the Na(+) channel blocker flecainide were used for comparison. A single per os administration of GS967 (5 mg/kg) had no effect on blood pressure or heart rate (HR) in unanesthetized rats. In anesthetized rats, GS967 (0.6 ± 0.1 µM plasma concentration) had no significant effect on HR, PR or QRS electrocardiogram intervals, or contraction. Flecainide (8 mg/kg) slowed HR by 23% ± 3% (P < 0.001), prolonged the PR and QRS intervals by 42% ± 8% and 64% ± 12% (P < 0.001), and had a significant negative inotropic effect. Ivabradine (3 mg/kg) slowed HR by 36% ± 6% (P < 0.001). In rat and rabbit isolated perfused hearts, GS967 (0.1-3 µM) had no significant effects on HR, QRS interval, or contractile function. The results show that selective inhibition of cardiac I(Na,L) is not associated with chronotropic, dromotropic, inotropic, or hemodynamic changes.


Asunto(s)
Corazón/efectos de los fármacos , Corazón/fisiología , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Masculino , Técnicas de Cultivo de Órganos , Piridinas/farmacología , Conejos , Ratas , Ratas Sprague-Dawley , Triazoles/farmacología
4.
J Pharmacol Exp Ther ; 344(1): 23-32, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23010360

RESUMEN

Inhibition of cardiac late sodium current (late I(Na)) is a strategy to suppress arrhythmias and sodium-dependent calcium overload associated with myocardial ischemia and heart failure. Current inhibitors of late I(Na) are unselective and can be proarrhythmic. This study introduces GS967 (6-[4-(trifluoromethoxy)phenyl]-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine), a potent and selective inhibitor of late I(Na), and demonstrates its effectiveness to suppress ventricular arrhythmias. The effects of GS967 on rabbit ventricular myocyte ion channel currents and action potentials were determined. Anti-arrhythmic actions of GS967 were characterized in ex vivo and in vivo rabbit models of reduced repolarization reserve and ischemia. GS967 inhibited Anemonia sulcata toxin II (ATX-II)-induced late I(Na) in ventricular myocytes and isolated hearts with IC(50) values of 0.13 and 0.21 µM, respectively. Reduction of peak I(Na) by GS967 was minimal at a holding potential of -120 mV but increased at -80 mV. GS967 did not prolong action potential duration or the QRS interval. GS967 prevented and reversed proarrhythmic effects (afterdepolarizations and torsades de pointes) of the late I(Na) enhancer ATX-II and the I(Kr) inhibitor E-4031 in isolated ventricular myocytes and hearts. GS967 significantly attenuated the proarrhythmic effects of methoxamine+clofilium and suppressed ischemia-induced arrhythmias. GS967 was more potent and effective to reduce late I(Na) and arrhythmias than either flecainide or ranolazine. Results of all studies and assays of binding and activity of GS967 at numerous receptors, transporters, and enzymes indicated that GS967 selectively inhibited late I(Na). In summary, GS967 selectively suppressed late I(Na) and prevented and/or reduced the incidence of experimentally induced arrhythmias in rabbit myocytes and hearts.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Cardiotónicos/farmacología , Piridinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Triazoles/farmacología , Acetanilidas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Venenos de Cnidarios/farmacología , Femenino , Flecainida/farmacología , Sistema de Conducción Cardíaco/efectos de los fármacos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Mutación/fisiología , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Piperazinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Compuestos de Amonio Cuaternario/farmacología , Conejos , Ranolazina
5.
J Physiol ; 590(5): 1171-80, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22183728

RESUMEN

Early after-depolarization (EAD), or abnormal depolarization during the plateau phase of action potentials, is a hallmark of long-QT syndrome (LQTS). More than 13 genes have been identified as responsible for LQTS, and elevated risks for EADs may depend on genotypes, such as exercise in LQT1 vs. sudden arousal in LQT2 patients. We investigated mechanisms underlying different high-risk conditions that trigger EADs using transgenic rabbit models of LQT1 and LQT2, which lack I(Ks) and I(Kr) (slow and fast components of delayed rectifying K(+) current), respectively. Single-cell patch-clamp studies show that prolongation of action potential duration (APD) can be further enhanced by lowering extracellular potassium concentration ([K(+)](o)) from 5.4 to 3.6 mm. However, only LQT2 myocytes developed spontaneous EADs following perfusion with lower [K(+)](o), while there was no EAD formation in littermate control (LMC) or LQT1 myocytes, although APDs were also prolonged in LMC myocytes and LQT1 myocytes. Isoprenaline (ISO) prolonged APDs and triggered EADs in LQT1 myocytes in the presence of lower [K(+)](o). In contrast, continuous ISO perfusion diminished APD prolongation and reduced the incidence of EADs in LQT2 myocytes. These different effects of ISO on LQT1 and LQT2 were verified by optical mapping of the whole heart, suggesting that ISO-induced EADs are genotype specific. Further voltage-clamp studies revealed that ISO increases L-type calcium current (I(Ca)) faster than I(Ks) (time constant 9.2 s for I(Ca) and 43.6 s for I(Ks)), and computer simulation demonstrated a high-risk window of EADs in LQT2 during ISO perfusion owing to mismatch in the time courses of I(Ca) and I(Ks), which may explain why a sympathetic surge rather than high sympathetic tone can be an effective trigger of EADs in LQT2 perfused hearts. In summary, EAD formation is genotype specific, such that EADs can be elicited in LQT2 myocytes simply by lowering [K(+)](o), while LQT1 myocytes require sympathetic stimulation. Slower activation of I(Ks) than of I(Ca) by ISO may explain why different sympathetic modes, i.e. sympathetic surge vs. high sympathetic tone, are associated with polymorphic ventricular tachycardia in LQTS patients.


Asunto(s)
Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Animales Modificados Genéticamente , Calcio/fisiología , Simulación por Computador , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Técnicas In Vitro , Isoproterenol/farmacología , Canal de Potasio KCNQ1/genética , Modelos Biológicos , Mutación , Potasio/fisiología , Conejos
6.
Sci Rep ; 11(1): 17449, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465831

RESUMEN

Heart failure (HF) and cardiac arrhythmias share overlapping pathological mechanisms that act cooperatively to accelerate disease pathogenesis. Cardiac fibrosis is associated with both pathological conditions. Our previous work identified a link between phytosterol accumulation and cardiac injury in a mouse model of phytosterolemia, a rare disorder characterized by elevated circulating phytosterols and increased cardiovascular disease risk. Here, we uncover a previously unknown pathological link between phytosterols and cardiac arrhythmias in the same animal model. Phytosterolemia resulted in inflammatory pathway induction, premature ventricular contractions (PVC) and ventricular tachycardia (VT). Blockade of phytosterol absorption either by therapeutic inhibition or by genetic inactivation of NPC1L1 prevented the induction of inflammation and arrhythmogenesis. Inhibition of phytosterol absorption reduced inflammation and cardiac fibrosis, improved cardiac function, reduced the incidence of arrhythmias and increased survival in a mouse model of phytosterolemia. Collectively, this work identified a pathological mechanism whereby elevated phytosterols result in inflammation and cardiac fibrosis leading to impaired cardiac function, arrhythmias and sudden death. These comorbidities provide insight into the underlying pathophysiological mechanism for phytosterolemia-associated risk of sudden cardiac death.


Asunto(s)
Arritmias Cardíacas/patología , Muerte Súbita Cardíaca/patología , Fibrosis/patología , Insuficiencia Cardíaca/patología , Hipercolesterolemia/complicaciones , Inflamación/patología , Enfermedades Intestinales/complicaciones , Errores Innatos del Metabolismo Lipídico/complicaciones , Fitosteroles/efectos adversos , Fitosteroles/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/fisiología , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/fisiología , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Citocinas/sangre , Muerte Súbita Cardíaca/etiología , Fibrosis/etiología , Fibrosis/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Lipoproteínas/fisiología , Proteínas de Transporte de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Mol Biol Cell ; 17(1): 146-54, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16251351

RESUMEN

KCa3.1 is an intermediate conductance Ca2+-activated K+ channel that is expressed predominantly in hematopoietic cells, smooth muscle cells, and epithelia where it functions to regulate membrane potential, Ca2+ influx, cell volume, and chloride secretion. We recently found that the KCa3.1 channel also specifically requires phosphatidylinositol-3 phosphate [PI(3)P] for channel activity and is inhibited by myotubularin-related protein 6 (MTMR6), a PI(3)P phosphatase. We now show that PI(3)P indirectly activates KCa3.1. Unlike KCa3.1 channels, the related KCa2.1, KCa2.2, or KCa2.3 channels do not require PI(3)P for activity, suggesting that the KCa3.1 channel has evolved a unique means of regulation that is critical for its biological function. By making chimeric channels between KCa3.1 and KCa2.3, we identified a stretch of 14 amino acids in the carboxy-terminal calmodulin binding domain of KCa3.1 that is sufficient to confer regulation of KCa2.3 by PI(3)P. However, mutation of a single potential phosphorylation site in these 14 amino acids did not affect channel activity. These data together suggest that PI(3)P and these 14 amino acids regulate KCa3.1 channel activity by recruiting an as yet to be defined regulatory subunit that is required for Ca2+ gating of KCa3.1.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/química , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Membrana Celular/metabolismo , Secuencia Conservada , Cricetinae , Citosol , Electrofisiología , Activación Enzimática , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Datos de Secuencia Molecular , Mutación/genética , Técnicas de Placa-Clamp , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Monoéster Fosfórico Hidrolasas , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras , Ratas , Alineación de Secuencia
8.
Mol Cell Biol ; 25(9): 3630-8, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831468

RESUMEN

Myotubularins (MTMs) belong to a large subfamily of phosphatases that dephosphorylate the 3' position of phosphatidylinositol 3-phosphate [PI(3)P] and PI(3,5)P(2). MTM1 is mutated in X-linked myotubular myopathy, and MTMR2 and MTMR13 are mutated in Charcot-Marie-Tooth syndrome. However, little is known about the general mechanism(s) whereby MTMs are regulated or the specific biological processes regulated by the different MTMs. We identified a Ca(2+)-activated K channel, K(Ca)3.1 (also known as KCa4, IKCa1, hIK1, or SK4), that specifically interacts with the MTMR6 subfamily of MTMs via coiled coil (CC) domains on both proteins. Overexpression of MTMR6 inhibited K(Ca)3.1 channel activity, and this inhibition required MTMR6's CC and phosphatase domains. This inhibition is specific; MTM1, a closely related MTM, did not inhibit K(Ca)3.1. However, a chimeric MTM1 in which the MTM1 CC domain was swapped for the MTMR6 CC domain inhibited K(Ca)3.1, indicating that MTM CC domains are sufficient to confer target specificity. K(Ca)3.1 was also inhibited by the PI(3) kinase inhibitors LY294002 and wortmannin, and this inhibition was rescued by the addition of PI(3)P, but not other phosphoinositides, to the patch pipette solution. PI(3)P also rescued the inhibition of K(Ca)3.1 by MTMR6 overexpression. These data, when taken together, indicate that K(Ca)3.1 is regulated by PI(3)P and that MTMR6 inhibits K(Ca)3.1 by dephosphorylating the 3' position of PI(3)P, possibly leading to decreased PI(3)P in lipid microdomains adjacent to K(Ca)3.1. K(Ca)3.1 plays important roles in controlling proliferation by T cells, vascular smooth muscle cells, and some cancer cell lines. Thus, our findings not only provide unique insights into the regulation of K(Ca)3.1 channel activity but also raise the possibility that MTMs play important roles in the negative regulation of T cells and in conditions associated with pathological cell proliferation, such as cancer and atherosclerosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Monoéster Fosfórico Hidrolasas/fisiología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Androstadienos/farmacología , Animales , Células CHO , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromonas/farmacología , Cricetinae , Biblioteca de Genes , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Potenciales de la Membrana/fisiología , Morfolinas/farmacología , Técnicas de Placa-Clamp , Fosfatidilinositoles/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras , Wortmanina
9.
Br J Pharmacol ; 173(21): 3088-3098, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27449698

RESUMEN

BACKGROUND AND PURPOSE: Enhanced late Na+ current (late INa ) in the myocardium is pro-arrhythmic. Inhibition of this current is a promising strategy to stabilize ventricular repolarization and suppress arrhythmias. Here, we describe GS-6615, a selective inhibitor of late INa , already in clinical development for the treatment of long QT syndrome 3 (LQT3). EXPERIMENTAL APPROACH: The effects of GS-6615 to inhibit late INa , versus other ion currents to shorten the ventricular action potential duration (APD), monophasic APD (MAPD) and QT interval, and decrease to the incidence of ventricular arrhythmias was determined in rabbit cardiac preparations. To mimic the electrical phenotype of LQT3, late INa was increased using the sea anemone toxin (ATX-II). KEY RESULTS: GS-6615 inhibited ATX-II enhanced late INa in ventricular myocytes (IC50  = 0.7 µM), shortened the ATX-II induced prolongation of APD, MAPD, QT interval, and decreased spatiotemporal dispersion of repolarization and ventricular arrhythmias. Inhibition by GS-6615 of ATX-II enhanced late INa was strongly correlated with shortening of myocyte APD and isolated heart MAPD (R2  = 0.94 and 0.98 respectively). In contrast to flecainide, GS-6615 had the minimal effects on peak INa . GS-6615 did not decrease the maximal upstroke velocity of the action potential (Vmax) nor widen QRS intervals. CONCLUSIONS AND IMPLICATIONS: GS-6615 was a selective inhibitor of late INa , stabilizes the ventricular repolarization and suppresses arrhythmias in a model of LQT3. The concentrations at which the electrophysiological effects of GS-6615 were observed are comparable to plasma levels associated with QTc shortening in patients with LQT3, indicating that these effects are clinically relevant.


Asunto(s)
Antiarrítmicos/farmacología , Corazón/efectos de los fármacos , Oxazepinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Animales , Antiarrítmicos/química , Síndrome de QT Prolongado/tratamiento farmacológico , Estructura Molecular , Oxazepinas/química , Conejos , Bloqueadores de los Canales de Sodio/química
10.
J Med Chem ; 59(19): 9005-9017, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27690427

RESUMEN

Late sodium current (late INa) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Nav 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late INa, is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF). We will describe structure-activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late INa inhibitor 1 (ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S-T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC50 values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late INa inhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.

11.
PLoS One ; 10(5): e0122754, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25970695

RESUMEN

BACKGROUND: Remodeling of cardiac repolarizing currents, such as the downregulation of slowly activating K+ channels (IKs), could underlie ventricular fibrillation (VF) in heart failure (HF). We evaluated the role of Iks remodeling in VF susceptibility using a tachypacing HF model of transgenic rabbits with Long QT Type 1 (LQT1) syndrome. METHODS AND RESULTS: LQT1 and littermate control (LMC) rabbits underwent three weeks of tachypacing to induce cardiac myopathy (TICM). In vivo telemetry demonstrated steepening of the QT/RR slope in LQT1 with TICM (LQT1-TICM; pre: 0.26±0.04, post: 0.52±0.01, P<0.05). In vivo electrophysiology showed that LQT1-TICM had higher incidence of VF than LMC-TICM (6 of 11 vs. 3 of 11, respectively). Optical mapping revealed larger APD dispersion (16±4 vs. 38±6 ms, p<0.05) and steep APD restitution in LQT1-TICM compared to LQT1-sham (0.53±0.12 vs. 1.17±0.13, p<0.05). LQT1-TICM developed spatially discordant alternans (DA), which caused conduction block and higher-frequency VF (15±1 Hz in LQT1-TICM vs. 13±1 Hz in LMC-TICM, p<0.05). Ca2+ DA was highly dynamic and preceded voltage DA in LQT1-TICM. Ryanodine abolished DA in 5 out of 8 LQT1-TICM rabbits, demonstrating the importance of Ca2+ in complex DA formation. Computer simulations suggested that HF remodeling caused Ca2+-driven alternans, which was further potentiated in LQT1-TICM due to the lack of IKs. CONCLUSIONS: Compared with LMC-TICM, LQT1-TICM rabbits exhibit steepened APD restitution and complex DA modulated by Ca2+. Our results strongly support the contention that the downregulation of IKs in HF increases Ca2+ dependent alternans and thereby the risk of VF.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Sistema de Conducción Cardíaco/anomalías , Insuficiencia Cardíaca/metabolismo , Enfermedades Musculares/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Síndrome de Romano-Ward/metabolismo , Fibrilación Ventricular/metabolismo , Animales , Animales Modificados Genéticamente , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Ecocardiografía , Sistema de Conducción Cardíaco/diagnóstico por imagen , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Transporte Iónico , Masculino , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/fisiopatología , Conejos , Síndrome de Romano-Ward/diagnóstico por imagen , Síndrome de Romano-Ward/fisiopatología , Fibrilación Ventricular/diagnóstico por imagen , Fibrilación Ventricular/fisiopatología
12.
Heart Rhythm ; 11(12): 2288-96, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25111327

RESUMEN

BACKGROUND: If channels are functionally expressed in atrioventricular (AV) nodal tissue. OBJECTIVE: The purpose of this study was to address whether the prototypical If inhibitor, ivabradine, at clinically safe concentrations can slow AV node conduction to reduce ventricular rate (VR) during atrial fibrillation (AF). METHODS: Effects of ivabradine (0.1 mg/kg i.v. bolus) were studied in an anesthetized Yorkshire pig (N = 7) model of AF and in isolated guinea pig hearts (N = 7). RESULTS: Ivabradine reduced heart rate (P = .0001) without affecting mean arterial pressure during sinus rhythm. The agent lengthened PR intervals in a rate-dependent manner (P = .0009) by 14 ± 2.7 ms (P = .003) and 25 ± 3.0 ms (P = .0004) and increased atrial-His (A-H) intervals in a rate-dependent manner (P = .020) by 10 ± 1.7 ms and 17 ± 2.8 ms during pacing at 130 and 180 bpm, respectively (both P = .0008). Similar rate-dependent effects were observed in isolated guinea pig hearts. Ivabradine slowed VR during AF from 240 ± 21 bpm to 211 ± 25 bpm (P = .041). The ivabradine-induced increase in A-H interval was inversely correlated with VR (r = -0.85, P = .03, at 130 bpm; r = -0.95, P = .003, at 180 bpm). QT and HV intervals, AF dominant frequency (8.5 ± 0.9 to 8.7 ± 1.1 Hz, P = NS), mean arterial pressure, and left ventricular dP/dt (1672 ± 222 to 1889 ± 229 mm Hg/s, P = NS) during AF were unaffected. CONCLUSION: Ivabradine's rate-dependent increase in A-H interval is highly correlated with VR during AF. As dominant frequency was unaltered, AV node conduction slowing during high nodal activation rates appears to be the main mechanism of ivabradine's VR reduction. If inhibition in the AV node may provide a promising target to slow VR during AF without depression in contractility.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Nodo Atrioventricular/efectos de los fármacos , Benzazepinas/farmacología , Electrocardiografía , Función Ventricular Izquierda/efectos de los fármacos , Análisis de Varianza , Animales , Fibrilación Atrial/fisiopatología , Nodo Atrioventricular/fisiopatología , Benzazepinas/farmacocinética , Cateterismo Cardíaco , Fármacos Cardiovasculares/farmacología , Modelos Animales de Enfermedad , Fluoroscopía/métodos , Cobayas , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Infusiones Intravenosas , Ivabradina , Masculino , Quimioterapia por Pulso , Distribución Aleatoria , Valores de Referencia , Sus scrofa , Porcinos
14.
Am J Physiol Heart Circ Physiol ; 294(3): H1335-47, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18192223

RESUMEN

In contrast to the other heterotrimeric GTP-binding proteins (G proteins) Gs and Gi, the functional role of G o is still poorly defined. To investigate the role of G alpha o in the heart, we generated transgenic mice with cardiac-specific expression of a constitutively active form of G alpha o1* (G alpha o*), the predominant G alpha o isoform in the heart. G alpha o expression was increased 3- to 15-fold in mice from 5 independent lines, all of which had a normal life span and no gross cardiac morphological abnormalities. We demonstrate enhanced contractile function in G alpha o* transgenic mice in vivo, along with increased L-type Ca2+ channel current density, calcium transients, and cell shortening in ventricular G alpha o*-expressing myocytes compared with wild-type controls. These changes were evident at baseline and maintained after isoproterenol stimulation. Expression levels of all major Ca2+ handling proteins were largely unchanged, except for a modest reduction in Na+/Ca2+ exchanger in transgenic ventricles. In contrast, phosphorylation of the ryanodine receptor and phospholamban at known PKA sites was increased 1.6- and 1.9-fold, respectively, in G alpha o* ventricles. Density and affinity of beta-adrenoceptors, cAMP levels, and PKA activity were comparable in G alpha o* and wild-type myocytes, but protein phosphatase 1 activity was reduced upon G alpha o* expression, particularly in the vicinity of the ryanodine receptor. We conclude that G alpha o* exerts a positive effect on Ca2+ cycling and contractile function. Alterations in protein phosphatase 1 activity rather than PKA-mediated phosphorylation might be involved in hyperphosphorylation of key Ca2+ handling proteins in hearts with constitutive G alpha o activation.


Asunto(s)
Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/biosíntesis , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Citoesqueleto de Actina/fisiología , Infecciones por Adenoviridae/patología , Agonistas Adrenérgicos beta/farmacología , Animales , Animales Modificados Genéticamente , Northern Blotting , Western Blotting , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/fisiología , Separación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocromos c/biosíntesis , Isoproterenol/farmacología , Ratones , Miocitos Cardíacos/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/fisiología
15.
Am J Physiol Heart Circ Physiol ; 291(2): H543-51, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16501027

RESUMEN

Cardiac ATP-sensitive K+ (K(ATP)) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression with the alpha-myosin heavy chain promoter. Weight gain and development after birth of these mice were similar to nontransgenic mice, but an increased mortality was noted after the age of 4-5 mo. Transgenic mice lacked cardiac K(ATP) channel activity as assessed with patch clamp techniques. Consistent with a decreased current density observed at positive voltages, the action potential duration was increased in these mice. Some myocytes developed EADs after isoproterenol treatment. Hemodynamic measurements revealed no significant effects on ventricular function (apart from a slightly elevated heart rate), whereas in vivo electrophysiological recordings revealed a prolonged ventricular effective refractory period in transgenic mice. The transgenic mice tolerated stress less well as evident from treadmill stress tests. The proarrhythmogenic features and lack of adaptation to a stress response in transgenic mice suggest that these features are intrinsic to the myocardium and that K(ATP) channels in the myocardium have an important role in protecting the heart from lethal arrhythmias and adaptation to stress situations.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Animales , Western Blotting , Electrocardiografía , Electrofisiología , Ventrículos Cardíacos/citología , Hemodinámica/fisiología , Canales KATP , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Pericardio/fisiología , Esfuerzo Físico/fisiología , Regiones Promotoras Genéticas/genética , ARN/biosíntesis , ARN/genética , Periodo Refractario Electrofisiológico/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcolema/metabolismo , Fracciones Subcelulares/metabolismo , Función Ventricular
16.
Am J Physiol Heart Circ Physiol ; 287(2): H681-90, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15277200

RESUMEN

The targeting of ion channels to particular membrane microdomains and their organization in macromolecular complexes allow excitable cells to respond efficiently to extracellular signals. In this study, we describe the formation of a complex that contains two scaffolding proteins: caveolin-3 (Cav-3) and a membrane-associated guanylate kinase (MAGUK), SAP97. Complex formation involves the association of Cav-3 with a segment of SAP97 localized between its PDZ2 and PDZ3 domains. In heterologous expression systems, this scaffolding complex can recruit Kv1.5 to form a tripartite complex in which each of the three components interacts with the other two. These interactions regulate the expression of currents encoded by a glycosylation-deficient mutant of Kv1.5. We conclude that the association of Cav-3 with SAP97 may constitute the nucleation site for the assembly of macromolecular complexes containing potassium channels.


Asunto(s)
Caveolinas/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Sitios de Unión , Células CHO , Células COS , Caveolina 3 , Chlorocebus aethiops , Cricetinae , Glicosilación , Canal de Potasio Kv1.5 , Mutación , Proteínas del Tejido Nervioso/química , Canales de Potasio con Entrada de Voltaje/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA