Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 25(9): e202300414, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38361446

RESUMEN

Electrochemical water-splitting to produce hydrogen is potential to substitute the traditional industrial coal gasification, but the oxygen evolution kinetics at the anode remains sluggish. In this paper, sea urchin-like Fe doped Ni3S2 catalyst growing on nickel foam (NF) substrate is constructed via a simple two-step strategy, including surface iron activation and post sulfuration process. The NF-Fe-Ni3S2 obtains at temperature of 130 °C (NF-Fe-Ni3S2-130) features nanoneedle-like arrays which are vertically grown on the particles to form sea urchin-like morphology, features high electrochemical surface area. As oxygen evolution catalyst, NF-Fe-Ni3S2-130 exhibits excellent oxygen evolution activities, fast reaction kinetics, and superior reaction stability. The excellent OER performance of sea urchin-like NF-Fe-Ni3S2-130 is mainly ascribed to the high-vertically dispersive of nanoneedles and the existing Fe dopants, which obviously improved the reaction kinetics and the intrinsic catalytic properties. The simple preparation strategy is conducive to establish high-electrochemical-interface catalysts, which shows great potential in renewable energy conversion.

2.
Chemphyschem ; 24(17): e202300290, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306634

RESUMEN

The development of lithium-ion batteries with simplified assembling steps and fast charge capability is crucial for current battery applications. In this study, we propose a simple in-situ strategy for the construction of high-dispersive cobalt oxide (CoO) nanoneedle arrays, which grow vertically on a copper foam substrate. It is demonstrated that this nanoneedle CoO electrodes provide abundant electrochemical surface area. The resulting CoO arrays directly act as binder-free anodes in lithium-ion batteries with the copper foam functioning as the current collector. The highly-dispersed feature of the nanoneedle arrays enhances the effectiveness of active materials, leading to outstanding rate capability and superior long-term cycling stability. These impressive electrochemical properties are attributed to the highly-dispersed self-standing nanoarrays, the advantages of binder-free constituent, and the high exposed surface area of the copper foam substrate compared to copper foil, which enrich active surface area and facilitate charge transfer. The proposed approach to prepare binder-free lithium-ion battery anodes streamlines the electrode fabrication steps and holds significant promise for the future development of the battery industry.

3.
ChemSusChem ; : e202400640, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052349

RESUMEN

Electrochemical water splitting holds promise for sustainable hydrogen production but restricted by the sluggish reaction kinetics at the anodic oxygen evolution. Herein, we present a room-temperature spontaneous corrosion strategy to convert inexpensive iron (Fe) on iron foam substrates into highly active and stable self-supporting nickel iron layered hydroxide (NiFe LDH) catalysts. The corrosion evolution mechanisms are elucidated combining ex-situ scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS) techniques, demonstrating precise control over the concentration of Ni2+ and reaction time to achieve controllable micro-structures of NiFe LDH. Taking advantage of the self-supporting morphology and hierarchical micro-/nano- structure, the NiFe LDH with optimized Ni2+ concentration and reaction time exhibits significant small overpotentials of 160 mV and 200 mV for the OER at current densities of 10 mA cm-2 and 100 mA cm-2 respectively, showcasing excellent OER activities. Furthermore, this catalyst demonstrates superior reaction kinetics, high electrochemical stability, and excellent integral water splitting performance when coupled with a commercial Pt/C cathode. The energy-efficient, cost-effective, and scalable spontaneous corrosion strategy opens new avenues for the development of high-electrochemical-interface catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA