Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385880

RESUMEN

We present a language model Affordable Cancer Interception and Diagnostics (ACID) that can achieve high classification performance in the diagnosis of cancer exclusively from using raw cfDNA sequencing reads. We formulate ACID as an autoregressive language model. ACID is pretrained with language sentences that are obtained from concatenation of raw sequencing reads and diagnostic labels. We benchmark ACID against three methods. On testing set subjected to whole-genome sequencing, ACID significantly outperforms the best benchmarked method in diagnosis of cancer [Area Under the Receiver Operating Curve (AUROC), 0.924 versus 0.853; P < 0.001] and detection of hepatocellular carcinoma (AUROC, 0.981 versus 0.917; P < 0.001). ACID can achieve high accuracy with just 10 000 reads per sample. Meanwhile, ACID achieves the best performance on testing sets that were subjected to bisulfite sequencing compared with benchmarked methods. In summary, we present an affordable, simple yet efficient end-to-end paradigm for cancer detection using raw cfDNA sequencing reads.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Área Bajo la Curva , Ácidos Nucleicos Libres de Células/genética , Lenguaje , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
2.
Proc Natl Acad Sci U S A ; 120(30): e2301622120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459527

RESUMEN

Potassium vanadium fluorophosphate (KVPO4F) is regarded as a promising cathode candidate for potassium-ion batteries due to its high working voltage and satisfactory theoretical capacity. However, the usage of electrochemically inactive binders and redundant current collectors typically results in inferior electrochemical performance and low energy density, thus implying the important role of rational electrode structure design. Herein, we have reported a scalable and cost-effective synthesis of a cellulose-derived KVPO4F self-supporting electrode, which features a special surface hydroxyl chemistry, three-dimensional porous and conductive framework, as well as super flexible and stable architecture. The cellulose not only serves as a flexible substrate, a pore-forming agent, and a versatile binder for KVPO4F/conductive carbon but also enhances the K-ion migration ability. Benefiting from the special hydroxyl chemistry-induced storage mechanism and electrode structural stability, the flexible freestanding KVPO4F cathode exhibits high-rate performance (53.0% capacity retention with current densities increased 50-fold, from 0.2 C to 10 C) and impressive cycling stability (capacity retention up to 74.9% can be achieved over 1,000 cycles at a rate of 5 C). Such electrode design and surface engineering strategies, along with a deeper understanding of potassium storage mechanisms, provide invaluable guidance for better electrode design to boost the performance of potassium-ion energy storage systems.

3.
Small ; : e2402881, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967154

RESUMEN

In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm-2 with the Tafel slop of 40 mV dec-1. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm-2. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.

4.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35947966

RESUMEN

Integration of accumulative large-scale single-cell transcriptomes requires scalable batch-correction approaches. Here we propose Fugue, a simple and efficient batch-correction method that is scalable for integrating super large-scale single-cell transcriptomes from diverse sources. The core idea of the method is to encode batch information as trainable parameters and add it to single-cell expression profile; subsequently, a contrastive learning approach is used to learn feature representation of the additive expression profile. We demonstrate the scalability of Fugue by integrating all single cells obtained from the Human Cell Atlas. We benchmark Fugue against current state-of-the-art methods and show that Fugue consistently achieves improved performance in terms of data alignment and clustering preservation. Our study will facilitate the integration of single-cell transcriptomes at increasingly large scale.


Asunto(s)
Algoritmos , Transcriptoma , Benchmarking , Análisis por Conglomerados , Humanos
5.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35048121

RESUMEN

Advancement in single-cell RNA sequencing leads to exponential accumulation of single-cell expression data. However, there is still lack of tools that could integrate these unlimited accumulations of single-cell expression data. Here, we presented a universal approach iSEEEK for integrating super large-scale single-cell expression via exploring expression rankings of top-expressing genes. We developed iSEEEK with 11.9 million single cells. We demonstrated the efficiency of iSEEEK with canonical single-cell downstream tasks on five heterogenous datasets encompassing human and mouse samples. iSEEEK achieved good clustering performance benchmarked against well-annotated cell labels. In addition, iSEEEK could transfer its knowledge learned from large-scale expression data on new dataset that was not involved in its development. iSEEEK enables identification of gene-gene interaction networks that are characteristic of specific cell types. Our study presents a simple and yet effective method to integrate super large-scale single-cell transcriptomes and would facilitate translational single-cell research from bench to bedside.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Análisis por Conglomerados , Redes Reguladoras de Genes , Ratones , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
6.
Angew Chem Int Ed Engl ; 63(14): e202317135, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332748

RESUMEN

Organic electrode materials are promising for next-generation energy storage materials due to their environmental friendliness and sustainable renewability. However, problems such as their high solubility in electrolytes and low intrinsic conductivity have always plagued their further application. Polymerization to form conjugated organic polymers can not only inhibit the dissolution of organic electrodes in the electrolyte, but also enhance the intrinsic conductivity of organic molecules. Herein, we synthesized a new conjugated organic polymer (COPs) COP500-CuT2TP (poly [5,10,15,20-tetra(2,2'-bithiophen-5-yl) porphyrinato] copper (II)) by electrochemical polymerization method. Due to the self-exfoliation behavior, the porphyrin cathode exhibited a reversible discharge capacity of 420 mAh g-1, and a high specific energy of 900 Wh Kg-1 with a first coulombic efficiency of 96 % at 100 mA g-1. Excellent cycling stability up to 8000 cycles without capacity loss was achieved even at a high current density of 5 A g-1. This highly conjugated structure promotes COP500-CuT2TP combined high energy density, high power density, and good cycling stability, which would open new opportunity for the designable and versatile organic electrodes for electrochemical energy storage.

7.
Angew Chem Int Ed Engl ; 63(4): e202316449, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38059893

RESUMEN

Owing to outstanding performances, nickel-based electrocatalysts are commonly used in electrochemical alcohol oxidation reactions (AORs), and the active phase is usually vacancy-rich nickel oxide/hydroxide (NiOx Hy ) species. However, researchers are not aware of the catalytic role of atom vacancy in AORs. Here, we study vacancy-induced catalytic mechanisms for AORs on NiOx Hy species. As to AORs on oxygen-vacancy-poor ß-Ni(OH)2 , the only redox mediator is electrooxidation-induced electrophilic lattice oxygen species, which can only catalyze the dehydrogenation process (e.g., the electrooxidation of primary alcohol to carboxylic acid) instead of the C-C bond cleavage. Hence, vicinal diol electrooxidation reaction involving the C-C bond cleavage is not feasible with oxygen-vacancy-poor ß-Ni(OH)2 . Only through oxygen vacancy-induced adsorbed oxygen-mediated mechanism, can oxygen-vacancy-rich NiOx Hy species catalyze the electrooxidation of vicinal diol to carboxylic acid and formic acid accompanied with the C-C bond cleavage. Crucially, we examine how vacancies and vacancy-induced catalytic mechanisms work during AORs on NiOx Hy species.

8.
Small ; 19(41): e2303296, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37294167

RESUMEN

Hard Carbon have become the most promising anode candidates for sodium-ion batteries, but the poor rate performance and cycle life remain key issues. In this work, N-doped hard carbon with abundant defects and expanded interlayer spacing is constructed by using carboxymethyl cellulose sodium as precursor with the assistance of graphitic carbon nitride. The formation of N-doped nanosheet structure is realized by the CN• or CC• radicals generated through the conversion of nitrile intermediates in the pyrolysis process. This greatly enhances the rate capability (192.8 mAh g-1 at 5.0 A g-1 ) and ultra-long cycle stability (233.3 mAh g-1 after 2000 cycles at 0.5 A g-1 ). In situ Raman spectroscopy, ex situ X-ray diffraction and X-ray photoelectron spectroscopy analysis in combination with comprehensive electrochemical characterizations, reveal that the interlayer insertion coordinated quasi-metallic sodium storage in the low potential plateau region and adsorption storage in the high potential sloping region. The first-principles density functional theory calculations further demonstrate strong coordination effect on nitrogen defect sites to capture sodium, especially with pyrrolic N, uncovering the formation mechanism of quasi-metallic bond in the sodium storage. This work provides new insights into the sodium storage mechanism of high-performance carbonaceous materials, and offers new opportunities for better design of hard carbon anode.

9.
Small ; 18(22): e2201719, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35506200

RESUMEN

Na3 V2 (PO4 )2 F3 has attracted wide attention due to its high voltage platform, and stable crystal structure. However, its application is limited by the low electronic conductivity and the ease formation of impurity. In this paper, the spherical Br-doped Na3 V2 (PO4 )2 F3 /C is successfully obtained by a one-step spray drying technology. The hard template polytetrafluoroethylene (PTFE) supplements the loss of fluorine, forming porous structure that accelerates the infiltration of electrolyte. The soft template cetyltrimethylammonium bromide (CTAB) enables doping of bromine and can also control the fluorine content, meanwhile, the self-assembly effect strengthens the structure and refines the size of spherical particles. The loss, compensation, and regulation mechanism of fluorine are investigated. The Br-doped Na3 V2 (PO4 )2 F3 /C sphere exhibits superior rate capability with the capacities of 116.1, 105.1, and 95.2 mAh g-1 at 1, 10, and 30 C, and excellent cyclic performance with 98.3% capacity retention after 1000 cycles at 10 C. The density functional theory (DFT) calculation shows weakened charge localization and enhanced conductivity, meanwhile the diffusion energy barrier of sodium ions is reduced with Br doping. This paper proposes a strategy to construct fluorine-containing polyanions cathode, which enables the precise regulation of structure and morphology, thus leading to superior electrochemical performance.

10.
J Am Chem Soc ; 143(51): 21567-21579, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34908398

RESUMEN

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. The atomic dispersion of Ni is paramount for selective ethanol to acetaldehyde conversion, and we show that even the presence of small Ni ensembles in the Au surface results in the formation of undesirable byproducts via C-C scission. Spectroscopic, kinetic, and theoretical investigations of the reaction mechanism reveal that both C-H and O-H bond cleavage steps are kinetically relevant and single Ni atoms are confirmed as the active sites. X-ray absorption spectroscopy studies allow us to follow the charge of the Ni atoms in the Au host before, under, and after a reaction cycle. Specifically, in the pristine state the Ni atoms carry a partial positive charge that increases upon coordination to the electronegative oxygen in ethanol and decreases upon desorption. This type of oxidation state cycling during reaction is similar to the behavior of single-site homogeneous catalysts. Given the unique electronic structure of many single-site catalysts, such a combined approach in which the atomic-scale catalyst structure and charge state of the single atom dopant can be monitored as a function of its reactive environment is a key step toward developing structure-function relationships that inform the design of new catalysts.

11.
Small ; 17(21): e2100397, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33887090

RESUMEN

Hard carbons (HCs) are emerging as promising anodes for potassium-ion batteries (PIBs) due to overwhelming advantages including cost effectiveness and outstanding physicochemical properties. However, the fundamental K+ storage mechanism in HCs and the key structural parameters that determining K+ storage behaviors remain unclear and require further exploration. Herein, HC materials with controllable micro/mesopore structures are first synthesized by template-assisted spray pyrolysis technology. Detailed experimental analyses including in situ Raman and in situ electrochemical impedance spectroscopy analysis reveal two different K+ storage ways in the porous hard carbon (p-HC), e.g., the adsorption mechanism at high potential region and the intercalation mechanism at low potential region. Both are strongly dependent on the evolution of microstructure and significantly affect the electrochemical performance. Specifically, the adequate micropores act as the active sites for efficient K+ storage and ion-buffering reservoir to relieve the volume expansion, ensuring enhanced specific capacity and good structural stability. The abundant mesopores in the porous structure provide conductive pathways for ion diffusion and/or electrolyte infiltration, endowing fast ionic/electronic transport kinetics. All these together contribute to the high energy density of activated carbon//p-HCs potassium ion hybrid capacitors (74.5 Wh kg-1 , at 184.4 W kg-1 ).

12.
Angew Chem Int Ed Engl ; 60(42): 22908-22914, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34405508

RESUMEN

Nickel hydroxide (Ni(OH)2 ) is a promising electrocatalyst for the 5-hydroxymethylfurfural oxidation reaction (HMFOR) and the dehydronated intermediates Ni(OH)O species are proved to be active sites for HMFOR. In this study, Ni(OH)2 is modified by platinum to adjust the electronic structure and the current density of HMFOR improves 8.2 times at the Pt/Ni(OH)2 electrode compared with that on Ni(OH)2 electrode. Operando methods reveal that the introduction of Pt optimized the redox property of Ni(OH)2 and accelerate the formation of Ni(OH)O during the catalytic process. Theoretical studies demonstrate that the enhanced Ni(OH)O formation kinetics originates from the reduced dehydrogenation energy of Ni(OH)2 . The product analysis and transition state simulation prove that the Pt also reduces adsorption energy of HMF with optimized adsorption behavior as Pt can act as the adsorption site of HMF. Overall, this work here provides a strategy to design an efficient and universal nickel-based catalyst for HMF electro-oxidation, which can also be extended to other Ni-based catalysts such as Ni(HCO3 )2 and NiO.


Asunto(s)
Furaldehído/análogos & derivados , Hidróxidos/química , Níquel/química , Platino (Metal)/química , Adsorción , Biomasa , Catálisis , Furaldehído/química , Cinética , Nanopartículas del Metal/química , Oxidación-Reducción , Espectrometría Raman
13.
Angew Chem Int Ed Engl ; 60(13): 7297-7307, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33368979

RESUMEN

The nitrogenous nucleophile electrooxidation reaction (NOR) plays a vital role in the degradation and transformation of available nitrogen. Focusing on the NOR mediated by the ß-Ni(OH)2 electrode, we decipher the transformation mechanism of the nitrogenous nucleophile. For the two-step NOR, proton-coupled electron transfer (PCET) is the bridge between electrocatalytic dehydrogenation from ß-Ni(OH)2 to ß-Ni(OH)O, and the spontaneous nucleophile dehydrogenative oxidation reaction. This theory can give a good explanation for hydrazine and primary amine oxidation reactions, but is insufficient for the urea oxidation reaction (UOR). Through operando tracing of bond rupture and formation processes during the UOR, as well as theoretical calculations, we propose a possible UOR mechanism whereby intramolecular coupling of the N-N bond, accompanied by PCET, hydration and rearrangement processes, results in high performance and ca. 100 % N2 selectivity. These discoveries clarify the evolution of nitrogenous molecules during the NOR, and they elucidate fundamental aspects of electrocatalysis involving nitrogen-containing species.

14.
Small ; 16(42): e2003724, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32985107

RESUMEN

Potassium ion hybrid capacitors (PIHCs) are of particular interest benefiting from high energy/power densities. However, challenges lie in the kinetic mismatch between battery-type anode and capacitive-type cathode, as well as the difficulty in achieving optimized charge/mass balance. These significantly sacrifice the electrochemical performance of PIHCs. Here, strategies including charge/mass balance pursuance, electrolyte optimization, and tailored electrode design, are employed, together, to address these challenges. The key parameters determining the energy storage properties of PIHCs are identified. Specifically, i) the good kinetic match between anode and cathode translates into the very small variation of cathode/anode mass ratio at various rates. This sets general rules for the pursuance of charge balance, and to maximize the electrochemical performance of hybrid devices. ii) A potassium bis(fluoroslufonyl)imide (KFSI)-based electrolyte promotes better electrode kinetics and allows for the formation of more stable and intact solid electrolyte interphase layer, with respect to potassium hexafluorophosphate (KPF6 )-based electrolyte. And iii) hierarchically porous N/O codoped carbon nanosheets (NOCSs) with enlarged interlayer spacing, disordered structure, and abundant pyridinic-N functional groups are advantageous in terms of high electronic/ionic transport dynamics and structural stability. All these together, contribute to the high energy/power density of the activated carbon//NOCSs PIHCs (113.4 Wh kg-1 , at 17,000 W Kg-1 ).

15.
Small ; 16(8): e1903315, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31999051

RESUMEN

The development of materials with efficient heat dissipation capability has become essential for next-generation integrated electronics and flexible smart devices. Here, a 3D hybridized carbon film with graphene nanowrinkles and microhinge structures by a simple solution dip-coating technique using graphene oxide (GO) on polyimide (PI) skeletons, followed by high-temperature annealing, is constructed. Such a design provides this graphitized GO/PI (g-GO/PI) film with superflexibility and ultrahigh thermal conductivity in the through-plane (150 ± 7 W m-1 K-1 ) and in-plane (1428 ± 64 W m-1 K-1 ) directions. Its superior thermal management capability compared with aluminum foil is also revealed by proving its benefit as a thermal interface material. More importantly, by coupling the hypermetallic thermal conductivity in two directions, a novel type of carbon film origami heat sink is proposed and demonstrated, outperforming copper foil in terms of heat extraction and heat transfer for high-power devices. The hypermetallic heat dissipation performance of g-GO/PI carbon film not only shows its promising application as an emerging thermal management material, but also provides a facile and feasible route for the design of next-generation heat dissipation components for high-power flexible smart devices.

16.
Small ; 15(25): e1901454, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31069934

RESUMEN

Improved conductivity and suppressed dissolution of lithium polysulfides is highly desirable for high-performance lithium-sulfur (Li-S) batteries. Herein, by a facile solvent method followed by nitridation with NH3 , a 2D nitrogen-doped carbon structure is designed with homogeneously embedded Co4 N nanoparticles derived from metal organic framework (MOF), grown on the carbon cloth (MOF-Co4 N). Experimental results and theoretical simulations reveal that Co4 N nanoparticles act as strong chemical adsorption hosts and catalysts that not only improve the cycling performance of Li-S batteries via chemical bonding to trap polysulfides but also improve the rate performance through accelerating the conversion reactions by decreasing the polarization of the electrode. In addition, the high conductive nitrogen-doped carbon matrix ensures fast charge transfer, while the 2D structure offers increased pathways to facilitate ion diffusion. Under the current density of 0.1C, 0.5C, and 3C, MOF-Co4 N delivers reversible specific capacities of 1425, 1049, and 729 mAh g-1 , respectively, and retains 82.5% capacity after 400 cycles at 1C, as compared to the sample without Co4 N (MOF-C) values of 61.3% (200 cycles). The improved cell performance corroborates the validity of the multifunctional design of MOF-Co4 N, which is expected to be a potentially promising cathode host for Li-S batteries.

17.
J Am Chem Soc ; 138(20): 6396-9, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27167705

RESUMEN

Platinum catalysts are extensively used in the chemical industry and as electrocatalysts in fuel cells. Pt is notorious for its sensitivity to poisoning by strong CO adsorption. Here we demonstrate that the single-atom alloy (SAA) strategy applied to Pt reduces the binding strength of CO while maintaining catalytic performance. By using surface sensitive studies, we determined the binding strength of CO to different Pt ensembles, and this in turn guided the preparation of PtCu alloy nanoparticles (NPs). The atomic ratio Pt:Cu = 1:125 yielded a SAA which exhibited excellent CO tolerance in H2 activation, the key elementary step for hydrogenation and hydrogen electro-oxidation. As a probe reaction, the selective hydrogenation of acetylene to ethene was performed under flow conditions on the SAA NPs supported on alumina without activity loss in the presence of CO. The ability to maintain reactivity in the presence of CO is vital to other industrial reaction systems, such as hydrocarbon oxidation, electrochemical methanol oxidation, and hydrogen fuel cells.

18.
Nano Lett ; 15(1): 565-73, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25531798

RESUMEN

Nanoscale surface engineering is playing important role in enhancing the performance of battery electrode. VO2 is one of high-capacity but less-stable materials and has been used mostly in the form of powders for Li-ion battery cathode with mediocre performance. In this work, we design a new type of binder-free cathode by bottom-up growth of biface VO2 arrays directly on a graphene network for both high-performance Li-ion and Na-ion battery cathodes. More importantly, graphene quantum dots (GQDs) are coated onto the VO2 surfaces as a highly efficient surface "sensitizer" and protection to further boost the electrochemical properties. The integrated electrodes deliver a Na storage capacity of 306 mAh/g at 100 mA/g, and a capacity of more than 110 mAh/g after 1500 cycles at 18 A/g. Our result on Na-ion battery may pave the way to next generation postlithium batteries.

19.
J Am Chem Soc ; 137(10): 3470-3, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25746682

RESUMEN

While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ∼120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing.

20.
Nano Lett ; 14(12): 7180-7, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25402965

RESUMEN

The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA