Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Exp Eye Res ; 248: 110096, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278392

RESUMEN

PURPOSE: This study focused on the mechanisms of pyroptosis and oxidative damage exacerbation by NOD-like receptor thermal protein domain associated protein 3 (NLRP3) during the infection of canine corneal epithelial cells (CCECs) with Staphylococcus pseudintermedius. METHODS: The CCECs treated with dimethyl fumarate (DMF), recombinant high mobility group protein 1 (HMGB1), or N-acetylcysteine (NAC). The gasdermin (GSDM) family and HMGB1 mRNA expression levels were detected using quantitative reverse transcription polymerase chain reaction. Lactate dehydrogenase activity, bacterial counts, the pyroptosis rate, reactive oxygen species (ROS) content, and antioxidant enzyme activity were used to reflect pyroptosis and oxidation level. RESULTS: Regulation of NLRP3 significantly affected the pyroptosis rate and GSDMD-N expression levels during S. pseudintermedius infection. Inhibition of GSDMD-N protein activation by DMF reversed the exacerbation of pyroptosis induced by NLRP3 overexpression and reduced the levels of cleaved interleukin-1ß (IL-1ß), cleaved cysteinyl aspartate-specific protease-1, and NLRP3. In addition, NLRP3 was found to target the HMGB1 promoter and regulate its protein expression, to increase ROS accumulation and GSDMD-N expression levels, and activate the NLRP3-HMGB1-ROS-GSDMD signaling axis to aggravate pyroptosis during infection. CONCLUSIONS: NLRP3 aggravates pyroptosis and oxidative damage associated with the activation of NLRP3-GSDMD and NLRP3-HMGB1-ROS-GSDMD signaling pathways during the infection of CCECs with S. pseudintermedius.

2.
BMC Vet Res ; 20(1): 109, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500165

RESUMEN

BACKGROUND: Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS: In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/ß-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted ß-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/ß-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS: In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/ß-catenin signaling pathways.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Selenio , Femenino , Bovinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Selenio/farmacología , Selenio/metabolismo , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína X Asociada a bcl-2/farmacología , Vía de Señalización Wnt , Células Epiteliales , Proliferación Celular , Apoptosis
3.
BMC Vet Res ; 20(1): 383, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192330

RESUMEN

BACKGROUND: An elevated endogenous cortisol level due to the peripartum stress is one of the risk factors of postpartum bovine uterine infections. Selenium is a trace element that elicits anti-inflammation and antioxidation properties. This study aimed to reveal the modulatory effect of selenium on the inflammatory response of primary bovine endometrial stromal cells in the presence of high-level cortisol. The cells were subjected to lipopolysaccharide to establish cellular inflammation. The mRNA expression of toll-like receptor 4 (TLR4), proinflammatory factors, and selenoproteins was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blot and immunofluorescence. RESULTS: The pretreatment with sodium selenite (2 and 4 µΜ) resulted in a down-regulation of TLR4 and genes encoding proinflammatory factors, including interleukin (IL)-1ß, IL-6, IL-8, tumour necrosis factor α, cyclooxygenase 2, and inducible nitric oxide synthase. Selenium inhibited the activation of NF-κB and the phosphorylation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase. The suppression of those genes and pathways by selenium was more significant in the presence of high cortisol level (30 ng/mL). Meanwhile the gene expression of glutathione peroxidase 1 and 4 was promoted by selenium, and was even higher in the presence of cortisol and selenium. CONCLUSIONS: The anti-inflammatory action of selenium is probably mediated through NF-κB and MAPK, and is augmented by cortisol in primary bovine endometrial stromal cells.


Asunto(s)
Antiinflamatorios , Endometrio , Hidrocortisona , Selenio , Células del Estroma , Animales , Bovinos , Femenino , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/citología , Hidrocortisona/farmacología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Selenio/farmacología , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Células Cultivadas , Lipopolisacáridos/farmacología
4.
Reprod Domest Anim ; 59(6): e14647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924282

RESUMEN

Endometritis is a common postpartum disease in cows. It delays uterine involution and impairs normal physiological function. This can result in long-term or even lifelong infertility and cause significant losses to the dairy farming industry. Traditional treatments like antibiotics possess certain shortcomings, such as antibiotic residues, the abuse of antibiotics, and increased antimicrobial resistance of pathogens. Alternative treatment strategies are needed to minimize the utilization of antibiotics in dairy production. As an essential trace element in animals, selenium (Se) plays a vital role in regulating immune function, the inflammatory response, and oxidative stress, affecting the speed and completeness of tissue repair. This paper reviewed previous studies to analyse the potential of Se in the prevention and treatment of bovine endometritis, aiming to provide a new direction to increase production capacity in the future.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Selenio , Animales , Bovinos , Endometritis/veterinaria , Endometritis/prevención & control , Endometritis/tratamiento farmacológico , Femenino , Selenio/uso terapéutico , Selenio/administración & dosificación , Selenio/farmacología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
5.
J Cell Mol Med ; 27(3): 412-421, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36625039

RESUMEN

Mitochondria are cellular organelles that are involved in various metabolic processes, and damage to mitochondria can affect cell health and even lead to disease. Mitophagy is a mechanism by which cells selectively wrap and degrade damaged mitochondria to maintain cell homeostasis. However, studies have not focused on whether mitophagy is involved in the occurrence of Staphylococcus aureus (S. aureus)-induced mastitis in dairy cows. Here, we found that S. aureus infection of bovine macrophages leads to oxidative damage and mitochondria damage. The expression of LC3, PINK1 and Parkin was significantly increased after intracellular infection. We observed changes in the morphology of mitochondria and the emergence of mitochondrial autolysosomes in bovine macrophages by transmission electron microscopy and found that enhanced mitophagy promoted bacterial proliferation in the cell. In conclusion, this study demonstrates that S. aureus infection of bovine macrophages induces mitophagy through the PINK1/Parkin pathway, and this mechanism is used by the bacteria to avoid macrophage-induced death. These findings provide new ideas and references for the prevention and treatment of S. aureus infection.


Asunto(s)
Macrófagos , Mitofagia , Staphylococcus aureus , Animales , Bovinos , Mitocondrias/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Macrófagos/metabolismo
6.
J Cell Mol Med ; 27(10): 1373-1383, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37042086

RESUMEN

The bovine uterus is susceptible to infection, and the elevated cortisol level due to stress are common in cows after delivery. The essential trace element selenium plays a pivotal role in the antioxidant and anti-inflammatory defence system of body. This study investigated whether selenium supplementation protected endometrial cells from inflammation in the presence of high-level cortisol. The primary bovine endometrial epithelial cells were subjected to Escherichia coli lipopolysaccharide to establish cellular inflammation model. The gene expression of inflammatory mediators and proinflammatory cytokines was measured by quantitative PCR. The key proteins of NF-κB and MAPK signalling pathways were detected by Western blot and immunofluorescence. The result showed that pre-treatment of Na2 SeO3 (1, 2 and 4 µΜ) decreased the mRNA expression of proinflammatory genes, inhibited the activation of NF-κB and suppressed the phosphorylation of extracellular signal-regulated kinase, P38MAPK and c-Jun N-terminal kinase. This inhibition of inflammation was more apparent in the presence of high-level cortisol (30 ng/mL). These results indicated that selenium has an anti-inflammatory effect, which is mediated via NF-κB and MAPK signalling pathways and is augmented by cortisol in bovine endometrial epithelial cells.


Asunto(s)
FN-kappa B , Selenio , Femenino , Bovinos , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Hidrocortisona/farmacología , Selenio/farmacología , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Citocinas/metabolismo , Células Epiteliales/metabolismo , Sistema de Señalización de MAP Quinasas
7.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38289713

RESUMEN

Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3ß (GSK-3ß) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of ß-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3ß/ß-catenin signaling pathway.


After parturition, endometritis is a common bovine disease, which hinders endometrial repair and reduces bovine economic value. Besides, parturition-induced high cortisol levels cause immunosuppression, aggravate infection, and further inhibit cell proliferation and tissue repair. As an essential trace element, adding selenium to feed helps to maintain the normal physiological function of animals. This study developed a cellular model using lipopolysaccharide (LPS) and cortisol to simulate cows with endometritis in stress conditions. The results showed that Se supplementation attenuated bovine endometrial epithelial cell damage and promoted their proliferation in the presence of LPS and high cortisol levels, which are positively correlated with the concentration of Se. Besides, this study proved another molecular mechanism for Se to regulate ß-catenin except for the Wnt signal by affecting the ß-catenin degradation pathway.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Selenio , Femenino , Bovinos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Endometritis/inducido químicamente , Endometritis/genética , Endometritis/veterinaria , Lipopolisacáridos/toxicidad , Hidrocortisona/metabolismo , Selenio/farmacología , Selenio/metabolismo , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Suplementos Dietéticos , Enfermedades de los Bovinos/genética
8.
Biol Trace Elem Res ; 202(4): 1568-1581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37407885

RESUMEN

Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.


Asunto(s)
FN-kappa B , Selenometionina , Femenino , Bovinos , Animales , FN-kappa B/metabolismo , Selenometionina/farmacología , Selenometionina/metabolismo , Klebsiella pneumoniae , Autofagia , Inflamación/metabolismo , Células Epiteliales/metabolismo
9.
Am J Reprod Immunol ; 91(2): e13820, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332507

RESUMEN

PROBLEM: Endometritis is a common disease that affects dairy cow reproduction. Autophagy plays a vital role in cellular homeostasis and modulates inflammation by regulating interactions with innate immune signaling pathways. However, little is known about the regulatory relationship between autophagy and inflammation in bovine endometrial epithelial cells (BEECs). Thus, we aimed to determine the role of autophagy in the inflammatory response in BEECs. METHODS OF STUDY: In the present study, the expression levels of proinflammatory cytokines were measured by quantitative real-time polymerase chain reaction. Changes in the nuclear factor-κB (NF-κB) pathway and autophagy were determined using immunoblotting and immunocytochemistry. The induction of autophagosome formation was visualized by transmission electron microscopy. RESULTS: Our results demonstrated that autophagy activation was inhibited in LPS-treated BEECs, while activation of the NF-κB pathway and the mRNA expression of IL-6, IL-8, and TNF-α were increased. Furthermore, blocking autophagy with the inhibitor chloroquine increased NF-κB signaling pathway activation and proinflammatory factor expression in LPS-treated BEECs. Conversely, activation of autophagy with the agonist rapamycin inhibited the NF-κB signaling pathway and downregulated proinflammatory factors. CONCLUSIONS: These data indicated that LPS-induced inflammation was related to the inhibition of autophagy in BEECs. Thus, the activation of autophagy may represent a novel therapeutic strategy for eliminating inflammation in BEECs.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Femenino , Bovinos , Animales , FN-kappa B/metabolismo , Inflamación/metabolismo , Células Epiteliales , Autofagia
10.
J Anim Sci ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219376

RESUMEN

Stress and infection seriously threaten the reproductive performance and health of dairy cows. Various perinatal stresses increase plasma cortisol concentrations in cows, and chronically high cortisol levels may increase the incidence and severity of the uterine diseases. Selenium (Se) enhances antioxidant capacity of cows. The aim of this study was to explore how Se affects the oxidative stress of primary bovine endometrial stromal cells (BESC) with high cortisol background. The levels of reactive oxygen species (ROS) and other biomarkers of oxidative stress were measured using flow cytometry and assay kits. The changes in nuclear NF-E2-related factor 2 (Nrf2) pathway were detected by Western blot, qPCR, and immunofluorescence. The result showed that lipopolysaccharide (LPS) increased (P < 0.01) ROS and malondialdehyde (MDA) content and reduced (P <0.01) superoxide dismutase (SOD) concentration, provoking BESC oxidative stress. The elevated levels of cortisol resulted in the accumulation (P < 0.05) of ROS and MDA and inhibition (P < 0.05) of SOD in unstimulated BESC, but demonstrated an antioxidative effect in LPS-stimulated cells. Pretreatment with Se reduced (P < 0.01) the levels of ROS and MDA, while increasing (P < 0.05) the antioxidant capacities and the relative abundance of gene transcripts and proteins related to the Nrf2 pathway in BESC. This antioxidant effect was more pronounced in the presence of high cortisol level. Se alleviated the LPS-induced cellular oxidative stress, which is probably achieved through activating Nrf2 pathway. At high cortisol levels, Se supplement has a more significant protective effect on BESC oxidative stress. This study provided evidence for the protective role of Se in bovine endometrial oxidative damage of stressed animals and suggested the potential regulatory mechanism in vitro.

11.
Virulence ; 15(1): 2333271, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38515339

RESUMEN

Staphylococcus pseudintermedius (S. pseudintermedius) is a common pathogen that causes canine corneal ulcers. However, the pathogenesis remained unclear. In this study, it has been demonstrated that S. pseudintermedius invaded canine corneal epithelial cells (CCECs) intracellularly, mediating oxidative damage and pyroptosis by promoting the accumulation of intracellular reactive oxygen species (ROS) and activating the NLRP3 inflammasome. The canine corneal stroma was infected with S. pseudintermedius to establish the canine corneal ulcer model in vivo. The intracellular infectious model in CCECs was established in vitro to explore the mechanism of the ROS - NLRP3 signalling pathway during the S. pseudintermedius infection by adding NAC or MCC950. Results showed that the expression of NLRP3 and gasdermin D (GSDMD) proteins increased significantly in the infected corneas (p < 0.01). The intracellular infection of S. pseudintermedius was confirmed by transmission electron microscopy and immunofluorescent 3D imaging. Flow cytometry analysis revealed that ROS and pyroptosis rates increased in the experimental group in contrast to the control group (p < 0.01). Furthermore, NAC or MCC950 inhibited activation of the ROS - NLRP3 signalling pathway and pyroptosis rate significantly, by suppressing pro-IL-1ß, cleaved-IL-1ß, pro-caspase-1, cleaved-caspase-1, NLRP3, GSDMD, GSDMD-N, and HMGB1 proteins. Thus, the research confirmed that oxidative damage and pyroptosis were involved in the process of CCECs infected with S. pseudintermedius intracellularly by the ROS - NLRP3 signalling pathway. The results enrich the understanding of the mechanisms of canine corneal ulcers and facilitate the development of new medicines and prevention measures.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Staphylococcus , Animales , Perros , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Úlcera , Línea Celular , Inflamasomas/metabolismo , Células Epiteliales/metabolismo , Sulfonamidas
12.
Biol Trace Elem Res ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814171

RESUMEN

Endometritis is a common postpartum disease of female animals that causes significant losses to the goat industry. High levels of cortisol induced by various stresses after delivery severely inhibit innate immunity and tissue repair. The repair ability of the endometrium is closely related to the reproductive performance of goats. Selenium (Se) is an essential trace element in animals that has powerful antioxidant and immunity-enhancing functions. In this study, we established a goat model of endometritis at high cortisol (Hydrocortisone) levels to investigate the effect of Se (supplement additive) on endometrial repair. The results showed that the clinical symptoms, %PMN in uterine secretions, morphological endometrial damage, and the gene expression of BAX were reduced in the goats with Se supplementation compared with those in the model group. Se increased the gene expression of BCL2, VEGFA, TGFB1, and PCNA and activated the PI3K/AKT and Wnt/ß-catenin signaling pathways in goats with Se supplementation. In conclusion, Se reduced the inflammatory response, increased the proliferation, and decreased the apoptosis of endometrial cells to promote endometrial tissue repair in goats with endometritis at high cortisol levels. It probably achieved this effect of promoting repair by activating the Wnt/ß-catenin and PI3K/AKT pathways and affecting the gene expression of VEGFA, TGFB1, PCNA, BCL2, and BAX.

13.
Int Immunopharmacol ; 116: 109822, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36750013

RESUMEN

Meloxicam is a selective cyclooxygenase-2 inhibitor and has been widely used in combination with antibiotics to alleviate uterine inflammation and provide analgesia in postpartum cows. Studies have shown that meloxicam has antioxidant and anti-inflammatory effects. However, the link between meloxicam and uterine inflammation and oxidative stress in dairy cows has not been studied. The purpose of this study was to research the effects of meloxicam (0.5 or 5 µM) on oxidative stress and inflammatory response of primary bovine endometrial epithelial cells (BEEC) stimulated by Escherichia coli lipopolysaccharide (1 µg/mL LPS). As a result, LPS stimulated the production of oxidative stress markers and the expression of inflammatory factors, accompanied by a decrease in the activity and the gene transcription of antioxidant enzymes. Co-treatment of meloxicam and LPS reduced the content of oxidative stress markers and the mRNA levels of the pro-inflammatory genes, and improved antioxidant enzyme activities and the corresponding gene expression as compared with the cells treated with LPS alone. Meloxicam attenuated the inhibitory effect of the Nrf2 pathway and the phosphorylation levels of p65 and IκBα caused by LPS. In conclusion, meloxicam alone had no effect on BEEC, but prevented oxidative stress and inflammatory response in LPS-stimulated BEEC.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Femenino , Bovinos , Animales , FN-kappa B/metabolismo , Meloxicam/uso terapéutico , Meloxicam/metabolismo , Meloxicam/farmacología , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células Epiteliales
14.
IEEE Trans Image Process ; 31: 5570-5584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35981063

RESUMEN

Fine-grained visual classification can be addressed by deep representation learning under supervision of manually pre-defined targets (e.g., one-hot or the Hadamard codes). Such target coding schemes are less flexible to model inter-class correlation and are sensitive to sparse and imbalanced data distribution as well. In light of this, this paper introduces a novel target coding scheme - dynamic target relation graphs (DTRG), which, as an auxiliary feature regularization, is a self-generated structural output to be mapped from input images. Specifically, online computation of class-level feature centers is designed to generate cross-category distance in the representation space, which can thus be depicted by a dynamic graph in a non-parametric manner. Explicitly minimizing intra-class feature variations anchored on those class-level centers can encourage learning of discriminative features. Moreover, owing to exploiting inter-class dependency, the proposed target graphs can alleviate data sparsity and imbalanceness in representation learning. Inspired by recent success of the mixup style data augmentation, this paper introduces randomness into soft construction of dynamic target relation graphs to further explore relation diversity of target classes. Experimental results can demonstrate the effectiveness of our method on a number of diverse benchmarks of multiple visual classification, especially achieving the state-of-the-art performance on three popular fine-grained object benchmarks and superior robustness against sparse and imbalanced data. Source codes are made publicly available at https://github.com/AkonLau/DTRG.

15.
Int Immunopharmacol ; 110: 108989, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35785729

RESUMEN

Autophagy is crucial for the maintenance of homeostasis under stimuli related to infection. Selenium (Se) plays variable roles in defence against infection and Selenomethionine (Se-Met) is a common Se supplementation. This study aimed to understand whether Se-Met could regulate the nuclear factor-kappa B (NF-κB) signaling pathway through autophagy. Mammary alveolar cell-T (MAC-T) was challenged with Escherichia coli (E. coli). Western blotting and real-time quantitative PCR (RT-qPCR) were used to detect the protein expression and mRNA expression of cytokines. Immunofluorescence assays were performed to observe the expression of intracellular LC3. The results showed that E. coli inhibited autophagy by decreasing the LC3-Ⅱ protein levels, and the Atg5 and Beclin1 protein levels were increased after 4 h. Infection also decreased the number of LC3 puncta. E. coli increased the phosphorylation of p65 and IκBα protein. Concomitantly, the levels of interleukin (IL)-1ß, IL-6, IL-8 and tumour necrosis factor (TNF)-α mRNA increased at 3 and 4 h post-infection. We further explored the regulatory role of autophagy on NF-κB-mediated inflammation with autophagy modulators and shAtg5. The results indicated that the autophagy activator reduced the phosphorylation of p65 and IκBα and the mRNA expression of IL-1ß, IL-6, IL-8 and TNF-α. Additionally, activating autophagy weakened the adhesion to MAC-T of E. coli. Autophagy inhibitors exacerbated NF-κB-mediated inflammation and strengthened the adhesion of E. coli to cells. We then examined the effects of Se-Met on NF-κB-mediated inflammation through autophagy. The data suggested that Se-Met enhanced LC3-II expression, inhibited the E. coli-induced phosphorylation of p65 and IκBα, and suppressed the adhesion ability of E. coli to MAC-T and that the effects of Se-Met in attenuating NF-κB-mediated inflammation were partially blocked by an autophagy inhibitor. In summary, Se-Met alleviated NF-κB-mediated inflammation induced by E. coli by enhancing autophagy in bovine mammary epithelial cells.


Asunto(s)
Infecciones por Escherichia coli , FN-kappa B , Animales , Autofagia , Bovinos , Células Epiteliales , Escherichia coli/genética , Inflamación/metabolismo , Interleucina-6 , Interleucina-8/farmacología , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , ARN Mensajero , Selenometionina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
16.
Dev Comp Immunol ; 133: 104426, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452691

RESUMEN

Bovine uterine infection is commonly caused by Escherichia coli (E. coli). Elevated concentrations of plasma cortisol have been reported in postpartum cows. However, the direct role of cortisol in the inflammatory response of bovine endometrial stromal cells (BESCs) remains unclear. Therefore, the aim of the study was to explore the regulatory effect of cortisol on lipopolysaccharide (LPS)-induced inflammatory response in BESCs. Both the primary and immortalized BESCs were used in this study. BESCs were treated with cortisol (5, 15, and 30 ng/mL) in the presence of LPS. The mRNA expression of inflammatory cytokines and chemokines was detected using RT-qPCR. Western blot and immunofluorescence were used to analyze the activation of the NF-κB and MAPK signaling pathways. The results revealed that cortisol downregulated the LPS-induced overexpression of interleukin(IL)-1ß, IL-6, IL-8, TNF-α, COX-2, iNOS in BESCs. Moreover, cortisol inhibited LPS-induced phosphorylation levels of IκB, p65, ERK1/2, JNK and p38, and p65 nuclear translocation in BESCs. These results indicated that cortisol inhibited LPS-induced inflammatory response in BESCs, which may be mediated by suppressing the NF-κB and MAPK signaling pathways.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Bovinos , Citocinas/metabolismo , Escherichia coli/metabolismo , Femenino , Hidrocortisona , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Células del Estroma
17.
Int Immunopharmacol ; 112: 109200, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36063687

RESUMEN

Staphylococcus aureus (S. aureus) is known to induce chronic and persistent bovine mammary infection, which affects milk quality and leads to premature culling. The ability of S. aureus to invade mammalian cells protects it from clearance by the immune system. Mitophagy is important in cell homeostasis, and can be utilized by pathogens for immune escape. However, mitophagy's role in S. aureus-associated bovine mastitis remains unclear. Here, S. aureus infection induced mitophagy and enhanced mitochondrial translocation of parkin in MAC-T cells. After mitophagy inhibition by Mdivi-1 treatment or PTEN-induced putative kinase 1 (PINK1) silencing in MAC-T cells infected with S. aureus, NOD-like receptor protein 3 (NLRP3) inflammasome activation and p65 and IκBα phosphorylation were increased. Meanwhile, PINK1 overexpression had the opposite effects. In addition, NLRP3 inflammasome overactivation and enhanced p65 and IκBα phosphorylation caused by PINK1 silencing were reversed by MitoTEMPO. Furthermore, PINK1/parkin-mediated mitophagy promoted S. aureus survival and contributed to persistent S. aureus infection. These findings provide new insights into S. aureus invasion in bovine mastitis.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Animales , Bovinos , Femenino , Células Epiteliales/metabolismo , Inflamasomas/metabolismo , Mitofagia , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Front Vet Sci ; 7: 580129, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33426015

RESUMEN

Bovine mastitis is a prevalent disease that causes serious economic problems globally in the dairy industry. Staphylococcus aureus is an important pathogen of bovine mastitis. This study was conducted to characterize S. aureus isolates from clinical bovine mastitis cases in large-scale dairy herds in China. S. aureus was isolated from 624 clinical mastitis cases and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In total, 62 S. aureus isolates were obtained. Cluster analysis, genetic diversity, quantification of biofilm formation, antimicrobial resistance, and detection of virulence genes were performed on these isolates of S. aureus. Eight isolates harbored the mecA gene and were sensitive to oxacillin. MALDI-TOF MS cluster analysis revealed that the 62 isolates were divided into three major clusters (I, II, III) and eight main groups (A-H) at the distance level of 700. The agr II was the most prevalent (56.5%). The 62 S. aureus isolates were assigned to seven spa types. The most common spa type was t529(58.1%), followed by t2196 (14.5%), t518 (14.5%), t571(6.5%), t034 (3.2%), t2734 (1.6%), and t730 (1.6%). Five STs were identified from seven representative isolates as follows: ST630/CC8, ST97/CC97, ST50, ST398, and ST705. All isolates had the ability to form biofilm. Antimicrobial resistance was most frequently observed to ciprofloxacin (29%), followed by penicillin (24.2%), and streptomycin (9.6%). All isolates harbored the fnbA, clfB (100%), icaA, and icaD genes. This study provides the basis for the development of bovine mastitis prevention program on large-scale dairy farms.

19.
Front Vet Sci ; 7: 443, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851026

RESUMEN

Mastitis is an economically important disease in dairy cows, which is often caused by Staphylococcus aureus (S. aureus). Selenium is an indispensable element for physiological function and contributes to reduce injury of the mammary glands in mastitis. However, adequate sources of selenium have always been an important consideration for livestock. Therefore, the study aimed to explore the protective effect and mechanism of Selenohomolanthionine (SeHLan) on mastitis induced by S. aureus. The S. aureus-induced rat model was established and three doses (0.2, 2, 20 µg/kg body weight/day) of dietary OS were supplemented. The bacterial load, histopathology, and myeloperoxidase (MPO) of the mammary glands were performed and determined. Cytokines, including interleukin (IL)-1ß, TNF-α, and IL-6, were detected using qRT-PCR. The key proteins of NF-κB and MAPK signaling pathways were analyzed by Western blot. The results revealed that OS supplementation could reduce the recruitment of neutrophils and macrophages in mammary tissues, but did not decrease S. aureus load in the tissues. The overexpression levels of IL-1ß, TNF-α, and IL-6 induced by S. aureus were inhibited after OS treatment. Furthermore, the increased phosphorylation of NF-κB and MAPKs proteins were also suppressed. The results suggest that dietary supplementation with adequate OS during pregnancy contributes to protect the mammary glands from injury caused by S. aureus and alleviate the inflammatory response.

20.
J Biomol Struct Dyn ; 23(5): 529-36, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16494502

RESUMEN

Photodynamics of two kinds of peripheral antenna complexes (LH2 of Rhodobacter sphaeroides, native LH2 (RS601) and B800-released LH2 where B800-BChls were partially or completely removed with different pH treatments), were studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results for these samples with different B800/B850 ratios demonstrated that under the excitation around B800 nm, the photoabsorption and photobleaching dynamics were caused by the direct excitation of upper excitonic levels of B850 and excited state of B800 pigments, respectively. Furthermore, the removal of B800 pigments had little effect on the energy transfer processes of B850 interband/intraband transfer.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Luz , Pigmentos Biológicos/química , Rhodobacter sphaeroides/química , Proteínas Bacterianas/efectos de la radiación , Electroquímica , Transferencia de Energía , Concentración de Iones de Hidrógeno , Complejos de Proteína Captadores de Luz/efectos de la radiación , Pigmentos Biológicos/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA