RESUMEN
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
RESUMEN
Low temperatures in late spring pose a potential threat to the maintenance of grain yield and quality. Despite the importance of protein and starch in wheat quality, they are often overlooked in models addressing climate change effects. In this study, we conducted multiyear environment-controlled phytotron experiments and observed adverse effects resulting from low-temperature stress (LTS) on plant carbon and nitrogen dynamics, grain protein and starch formation, and sink capacity. We quantified the relationships between low temperature during the jointing and booting stages and plant nitrogen uptake, grain nitrogen accumulation, grain starch accumulation, grain setting, and potential grain weight using source-sink relationship-based methods. The LTS factor was introduced to account for the cultivar-specific to LTS at different growth stages. Compared with the original model, the improved model produced fewer errors when simulating aboveground nitrogen accumulation, grain protein concentration, grain starch concentration, grain starch yield, grain number, and grain weight under LTS, with reductions of 60%, 71%, 73%, 58%, 50% and 65%, respectively. The improvements in the model enhance its mechanism and applicability in assessing short-term successive frost effects on wheat grain quality. Furthermore, when using the improved model, special attention should be given to the low-temperature sensitivity parameters.
RESUMEN
Two crystalline large-sized porous organic cages (POCs) based on conical calix[4]arene (C4A) were designed and synthesized. The four-jaw C4A unit tends to follow the face-directed self-assembly law with the planar triangular building blocks such as tris(4-aminophenyl)amine (TAPA) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) to generate a predictable cage with a stoichiometry of [6+8]. The formation of the large cages is confirmed through their relative molecular mass measured using MALDI-TOF/TOF spectra. The protonated molecular ion peaks of C4A-TAPA and C4A-TAPB were observed at m/z 5109.0 (calculated for C336H240O24N32: m/z 5109.7) and m/z 5594.2 (calculated for C384H264O24N24: m/z 5598.4). C4A-POCs exhibit I-type N2 adsorption-desorption isotherms with the BET surface areas of 1444.9â m2 â g-1 and 1014.6â m2 â g-1. The CO2 uptakes at 273â K are 62.1â cm3 â g-1 and 52.4â cm3 â g-1 at a pressure of 100 KPa. The saturated iodine vapor static uptakes at 348â K are 3.9â g â g-1 and 3.5â g â g-1. The adsorption capacity of C4A-TAPA for SO2 reaches to 124.4â cm3 â g-1 at 298â K and 1.3â bar. Additionally, the adsorption capacities of C4A-TAPA for C2H2, C2H4, and C2H6 were evaluated.
RESUMEN
Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.
Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , Animales , Ratas , Apoptosis , beta Catenina/genética , beta Catenina/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismoRESUMEN
The efficient and complete extraction of uranium from aqueous solutions is crucial for safeguarding human health from potential radiotoxicity and chemotoxicity. Herein, an ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately constructed, based on a calix[4]arene ligand. The large molecular skeleton and cup-shaped feature of the calix[4]arene enabled the as-prepared MOFs with large layer separations, which can be readily delaminated into ultrathin single-layer (â¼1.25 nm) nanosheets. The incorporation of permanent cavity structures to the MOF nanosheets can fully utilize their structural features of readily accessible adsorption groups and exposed surface area in uranium removal, reaching ultrafast adsorption kinetics; the functionalized cavity structure endowed MOF nanosheets with the ability to preconcentrate and extract uranium from aqueous solutions with ultrahigh efficiencies, even at extremely low concentrations. As a result, relatively high removal ratios (>95%) can be achieved for uranium within 5 min, even in the ultralow concentration range of 75-250 ppb, and the residual uranium was reduced to below 4.9 ppb. The MOF nanosheets also exhibited extremely high anti-interference ability, which could efficiently remove the low-level uranium (â¼150 ppb) from various real samples. The characterizations and density functional theory calculations demonstrated that the synergistic effects of multiple interactions between the carboxylate groups and cage-like cavities with uranyl ions can be responsible for the efficient and selective uranium extraction.
RESUMEN
OBJECTIVE: To investigate the expression of C6orf15 protein in gastric endoscopic biopsy specimens and its usage as an ancillary diagnostic biomarker in determining the grade of gastric dysplasia. METHODS: We selected 102 patients with gastric endoscopic biopsy specimens from Jinling Hospital. These were divided into four groups: 22 cases of gastric mucosal benign lesions, 28 with low-grade dysplasia (LGD, intestinal-type: 21 casesï¼foveolar-type: 7cases), 28 with high-grade dysplasia (HGD, intestinal-type: 20 casesï¼foveolar-type: 8 cases), and 24 cases of gastric adenocarcinoma. We examined the expressions of C6orf15, P53, and Ki67 in 102 gastric endoscopic biopsy specimens, including 47 cases with accompanying endoscopic submucosal dissection (ESD) specimens, using immunohistochemistry. RESULTS: In gastric HGD and gastric adenocarcinoma, the c6orf15 protein exhibits diffuse and strong cytoplasmic expression in tumor cells. Conversely, in gastric LGD and benign gastric mucosal lesions, the c6orf15 protein shows negative or faint yellow cytoplasmic staining. The expression rate of C6orf15 in high-grade gastric dysplasia (HGD, 93 %) and gastric adenocarcinoma (100 %) was significantly higher than in the gastric mucosal benign lesion group (0 %) and the low-grade dysplasia (LGD, 7 %) group (P < 0.001). CONCLUSION: The detection of C6orf15 protein expression could serve as a valuable adjunctive diagnostic tool for distinguishing between gastric HGD, LGD, and benign lesions. The combined assessment of C6orf15, P53, and Ki67 expressions may be beneficial in determining the grade of gastric dysplasia and evaluating the risk of progression in gastric mucosal lesions in clinical practice.
Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Mucosa Gástrica , Neoplasias Gástricas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Biopsia , Diagnóstico Diferencial , Mucosa Gástrica/patología , Mucosa Gástrica/metabolismo , Inmunohistoquímica/métodos , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Cognitive impairment (CI) is a type of mental health disorder that mainly affects cognitive abilities, such as learning, memory, perception, and problem-solving. Currently, in clinical practice, the treatment of cognitive impairment mainly focuses on the application of cholinesterase inhibitors and NMDA receptor antagonists; however, there is no specific and effective drug yet. Procatechuic acid (PCA) possesses various functions, including antibacterial, antiasthmatic, and expectorant effects. In recent years, it has received growing attention in the cognitive domain. Therefore, by summarizing the mechanisms of action of procatechuic acid in the treatment of cognitive impairment in this paper, it is found that procatechuic acid has multiple effects, such as regulating the expression of neuroprotective factors, inhibiting cell apoptosis, promoting the autophagy-lysosome pathway, suppressing oxidative stress damage, inhibiting inflammatory responses, improving synaptic plasticity dysfunction, inhibiting Aß deposition, reducing APP hydrolysis, enhancing the cholinergic system, and inhibiting the excitotoxicity of neuronal cells. The involved signaling pathways include activating Pi3K-akt-mTor and inhibiting JNK, P38 MAPK, P38-ERK-JNK, SIRT1, and NF-κB/p53, etc. This paper aims to present the latest progress in research on procatechuic acid, including aspects such as its chemical properties, sources, pharmacokinetics, mechanisms for treating neurodegenerative diseases.
Asunto(s)
Disfunción Cognitiva , Hidroxibenzoatos , Humanos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/uso terapéutico , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacosRESUMEN
BACKGROUND: High temperature stress (HTS) has become a serious threat to rice grain quality and few studies have examined the effects of HTS across multiple stages on rice grain quality. In the present study, we conducted 2 years of HTS treatments under three temperature regimes (32/22 °C, 40/30 °C and 44/34 °C) and HTS durations of 2 days and 4 days at three critical stages: booting, flowering, and a combination of booting and flowering. We employed the heat degree days (HDD) metric, which accounts for both the level and duration of HTS, to quantify the relationships between grain quality traits and HTS. RESULTS: The results revealed the diverse effects of HTS on rice grain quality at different stages, durations and temperature levels. HTS significantly (P < 0.05) reduced grain quality, with the highest sensitivities (reduction per 1 °C day-1 increase in HDD) observed at the flowering stage, followed by the combined and booting stages treatments under mild HTS treatment (40/30 °C). However, under extreme HTS treatments (44/34 °C) for 4 days, rice grains subjected to combined HTS treatment experienced complete mortality. CONCLUSION: Pre-exposed to HTS at the booting stage within a certain intensity can alleviate the adverse effects of post-flowering HTS on grain quality. This provides valuable insights for assessing the potential impact of multiple HTS events on the grain quality under future climate warming. © 2024 Society of Chemical Industry.
RESUMEN
The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.
Asunto(s)
Compuestos de Amonio , Insuficiencia Renal Crónica , Humanos , Adulto , Nitratos , China/epidemiología , Material Particulado/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/epidemiología , Suelo , Sulfatos , Óxidos de AzufreRESUMEN
The calixarenes are ideal building blocks for constructing photocatalytic covalent organic frameworks (COFs), owing to their electron-rich and bowl-shaped π cavities that endow them with electron-donating and adsorption properties. However, the synthesis and structural confirmation of COFs based on calixarenes are still challenging due to their structural flexibility and conformational diversity. In this study, a calix[4]arene-derived 2D COF is synthesized using 5,11,17,23-tetrakis(p-formyl)-25,26,27,28-tetrahydroxycalix[4]arene (CHO-C4A) as the electron donor and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BTD) as the acceptor. The powder X-ray diffraction data and theoretical simulation of crystal structure indicate that COF-C4A-BTD exhibits high crystallinity and features a non-interpenetrating undulating 2D layered structure with AA-stacking. The density functional theory theoretical calculation, transient-state photocurrent tests, and electrochemical impedance spectroscopy confirm the intramolecular charge transfer behavior of COF-C4A-BTD with a donor-acceptor structure, leading to its superior visible-light-driven photocatalytic activity. COF-C4A-BTD exhibits a narrow band gap of 1.99 eV and a conduction band energy of -0.37 V versus normal hydrogen electrode. The appropriate energy band structure can facilitate the participation of ·O2- and h+ . COF-C4A-BTD demonstrates high efficacy in removing organic pollutants, such as bisphenol A, rhodamine B, and methylene blue, with removal rates of 66%, 85%, and 99% respectively.
RESUMEN
In response to increasing global warming, extreme heat stress significantly alters photosynthetic production. While numerous studies have investigated the temperature effects on photosynthesis, factors like vapour pressure deficit (VPD), leaf nitrogen, and feedback of sink limitation during and after extreme heat stress remain underexplored. This study assessed photosynthesis calculations in seven rice growth models using observed maximum photosynthetic rate (Pmax ) during and after short-term extreme heat stress in multi-year environment-controlled experiments. Biochemical models (FvCB-type) outperformed light response curve-based models (LRC-type) when incorporating observed leaf nitrogen, photosynthetically active radiation, temperatures, and intercellular CO2 concentration (Ci ) as inputs. Prediction uncertainty during heat stress treatment primarily resulted from variation in temperatures and Ci . Improving FVPD (the slope for the linear effect of VPD on Ci /Ca ) to be temperature-dependent, rather than constant as in original models, significantly improved Ci prediction accuracy under heat stress. Leaf nitrogen response functions led to model variation in leaf photosynthesis predictions after heat stress, which was mitigated by calibrated nitrogen response functions based on active photosynthetic nitrogen. Additionally, accounting for observed differences in carbohydrate accumulation between panicles and stems during grain filling improved the feedback of sink limitation, reducing Ci overestimation under heat stress treatments.
Asunto(s)
Calentamiento Global , Respuesta al Choque Térmico , Nitrógeno , Oryza , Fotosíntesis , Hojas de la Planta , Dióxido de Carbono/fisiología , Grano Comestible , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Modelos Biológicos , Nitrógeno/fisiología , Oryza/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , TemperaturaRESUMEN
AIMS: Metaplastic thymoma is a rare thymic tumour characterized by Yes Associated Protein 1 (YAP1) and Mastermind Like Transcriptional Coactivator 2 (MAML2) gene fusions resulting from an intrachromosomal inversion of chromosome 11. Immunohistochemistry with an antibody directed against the C-terminus of YAP1 has shown loss of expression in YAP1-rearranged vascular neoplasms, poromas, and porocarcinomas. This study aimed to validate an anti-YAP1 C-terminal antibody as an ancillary immunohistochemical marker for the diagnosis of metaplastic thymoma. MATERIALS AND METHODS: Ten metaplastic thymomas were selected for the current study. Fluorescence in situ hybridization (FISH), next-generation sequencing (NGS), and reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed to detect YAP1::MAML2 fusions. We then performed immunohistochemistry to detect YAP1 C-terminus expression in 10 metaplastic thymomas, 50 conventional thymomas (10 each of type A thymoma, type AB thymoma, type B1 thymoma, type B2 thymoma, and type B3 thymoma) and seven thymic carcinomas. RESULTS: All 10 cases showed narrow split signals with a distance of nearly two signal diameters and sometimes had false-negative results in YAP1 and MAML2 break-apart FISH (BA-FISH). Abnormal colocalized signals of the YAP1::MAML2 fusion were observed in all 10 cases using fusion FISH (F-FISH) assays. Eight of 10 cases with adequate nucleic acids were successfully sequenced and all showed YAP1::MAML2 fusions; in two cases the fusions were detected by both DNA and RNA sequencing and in six cases by RNA sequencing only. YAP1::MAML2 fusion transcripts were identified in four cases by RT-PCR. Metaplastic thymoma showed loss of YAP1 C-terminus expression in all 10 (100%) cases. All other thymic neoplasms showed retained YAP1 C-terminus expression. CONCLUSION: YAP1 C-terminus immunohistochemistry is a highly sensitive and specific ancillary marker that distinguishes metaplastic thymoma from its mimics. BA-FISH assays could not effectively detect YAP1::MAML2 fusions due to the proximity of the two genes. Loss of YAP1 C-terminus expression is a reliable surrogate for the detection of YAP1::MAML2 fusions in metaplastic thymoma.
Asunto(s)
Timoma , Neoplasias del Timo , Humanos , Timoma/diagnóstico , Timoma/genética , Timoma/metabolismo , Hibridación Fluorescente in Situ , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias del Timo/diagnóstico , Neoplasias del Timo/genética , Neoplasias del Timo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Reordenamiento Génico , Transactivadores/genéticaRESUMEN
In this work, we propose a compact effective surface plasmon polariton (CESPP) transmission line (TL) based on a structural dispersion-induced surface plasmon polaritons (SPPs) mode, which can enhance confinement while ensuring that the working bandwidth is not reduced. The dispersion relation of the CESPPs proposed in this article indicates that the shallower the groove, the stronger the confinement. Furthermore, the CESPPs may facilitate longitudinal miniaturization, since the configuration of the unit cell is simple. The coupling effect between two CESPP TLs has been well studied, revealing that excellent cross talk suppression can be achieved. The measurement results exhibit strong agreement with full-wave simulations, suggesting that the proposed CESPP TL holds significant potential for valuable applications in modern high-speed circuits.
RESUMEN
OBJECTIVES: To determine the extracellular volume (ECV) fraction derived from equilibrium contrast-enhanced CT for predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC). METHODS: The ECV fraction before NCRT (ECVpre) and/or ECV after NCRT (ECVpost) of rectal tumors was assessed, and ECVΔ was calculated as ECVpost - ECVpre. The histopathologic tumor regression grading (TRG) was assessed. pCR (TRG 0 grade) was defined as the absence of viable tumor cells in the primary tumor and lymph nodes. Demographic and clinicopathological characteristics and ECV fraction were compared between the pCR and non-pCR groups. A mixed model was constructed by logistic regression. The performance for predicting pCR was assessed with the area under the receiver-operator curve (AUC). The AUCs of the different methods were compared by the method proposed by DeLong et al. RESULTS: Seventy-five patients were included; 17 achieved pCR, and 58 achieved non-pCR. The ECVpost (17.05 ± 2.36% vs. 29.94 ± 1.20%; p < 0.001) and ECVΔ (- 17.01 ± 3.01% vs. 0.44 ± 1.45%; p < 0.001) values in the pCR group were significantly lower than those in the non-pCR group. The mixed model that combined ECVpost with ECVΔ achieved an AUC of 0.92 (95% confidence interval (CI) = 0.81-0.98), which was higher than that of ECVpost (AUC, 0.91 (95% CI = 0.80-0.97); p = 0.60) or ECVΔ (AUC, 0.90 (95% CI = 0.79-0.97); p = 0.61). CONCLUSIONS: ECVpost and ECVΔ determined by using equilibrium contrast-enhanced CT were useful in distinguishing between pCR and non-pCR patients with LARC who received NCRT. KEY POINTS: ⢠ECVpost and ECVΔ (ECVpost - ECVpre) differed significantly between the non-pCR and pCR groups. ⢠ECVpre cannot be used to predict the efficacy of neoadjuvant chemoradiotherapy. ⢠ECVpost combined with ECVΔ had the best performance with an AUC of 0.92 for predicting pCR after NCRT in LARC.
Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias del Recto , Humanos , Resultado del Tratamiento , Terapia Neoadyuvante/métodos , Quimioradioterapia/métodos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Tomografía Computarizada por Rayos XRESUMEN
Myocardial ischemia/reperfusion injury (MIRI) is a major cause of heart failure after myocardial infarction. It has been reported that miR-322 is involved in MIRI progression, while the molecular mechanism of miR-322 in regulating MIRI progression needs to be further probed. MIRI cell model was established by oxygen-glucose deprivation/reoxygenation (OGD/R). Cell viability was assessed using MTS assay. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining were employed to analyze cell apoptosis. In addition, the interactions between miR-322, Smad7/Smurf2, hypoxia-inducible factor alpha (HIF-1α), and ß-catenin were verified by dual-luciferase reporter gene assay. Our results displayed that miR-322 was significantly downregulated in OGD/R-treated H9c2 cells, and its overexpression resulted in increased cell viability and reduced the apoptosis. Smurf2 and Smad7 were identified as the direct targets of miR-322. Smad7 knockdown or Smurf2 knockdown increased OGD/R-treated H9c2 cell viability and suppressed the apoptosis. Meanwhile, miR-322 mimics abolished the mitigating effect of Smad7 or Smurf2 overexpression on MIRI. In addition, the Smad3/ß-catenin pathway was identified as the downstream pathway of Smurf2/Smad7. Moreover, it was found that HIF-1α interacted with the miR-322 promoter, and ß-catenin interacted with the HIF-1α promoter to form a loop. HIF-1α-induced upregulated miR-322 activated the Smad3/ß-catenin pathway by targeting Smurf2 and Smad7 to improve MIRI; meanwhile, ß-catenin/HIF-1α formed a positive feedback loop to continuously improve MIRI.
Asunto(s)
MicroARNs , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Humanos , Apoptosis , beta Catenina/metabolismo , Retroalimentación , MicroARNs/metabolismo , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Proteína smad3/metabolismo , Proteína smad7/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismoRESUMEN
BACKGROUND: Little is known about the association between a plant-based diet and the risk of gallstone disease (GD), especially in developing counties. We tested the hypothesis that shifting dietary patterns would be related to the risk of GD, and that the Mediterranean diet (MED) adjusted for China would be beneficial for lowering risk of GD. METHODS: Data were extracted from the baseline survey of the China Multi-Ethnic Cohort study. An alternative Mediterranean diet (aMED) score was assessed based on a food frequency questionnaire, and three posteriori dietary patterns (the modern dietary pattern, the coarse grain dietary pattern, and the rice dietary pattern) were identified using factor analysis. Multivariable logistic regression models were developed to evaluate the association between dietary patterns and GD risks. RESULTS: A total of 89,544 participants were included. The prevalence of GD was 7.5%. Comparing the highest with lowest quintiles, aMED was associated with an increased risk of GD (OR 1.13; 95% CI, 1.04-1.24; Ptrend = 0.003), whereas the rice dietary pattern was inversely related to GD risk (OR 0.79; 95% CI, 0.71-0.87; Ptrend < 0.001). In stratified analysis, the rice dietary pattern had a stronger inverse association in the subgroups of females, older, urban, and overweight participants, and those with diabetes-factors associated with higher rates of GD in previous studies. CONCLUSION: Higher adherence to the rice dietary pattern was associated with a lower risk of GD. For high-risk populations, making some shift to a traditional agricultural diet might help with primary prevention of GD.
Asunto(s)
Dieta Mediterránea , Cálculos Biliares , Adulto , Humanos , China/epidemiología , Estudios de Cohortes , Estudios Transversales , Dieta , Pueblos del Este de Asia , Cálculos Biliares/epidemiología , Japón , Factores de RiesgoRESUMEN
Helicoverpa armigera is a worldwide pest that has been efficiently controlled by transgenic plants expressing Bt Cry toxins. To exert toxicity, Cry toxins bind to different receptors located in larval midgut cells. Previously, we reported that GATA transcription factor GATAe activates the expression of multiple H. armigera Cry1Ac receptors in different insect cell lines. Here, the mechanism involved in GATAe regulation of HaABCC2 gene expression, a key receptor of Cry1Ac, was analyzed. HaGATAe gene silencing by RNAi in H. armigera larvae confirmed the activation role of HaGATAe on the expression of HaABCC2 in the midgut. The contribution of all potential GATAe-binding sites was analyzed by site-directed mutagenesis using Hi5 cells expressing a reporter gene under regulation of different modified HaABCC2 promoters. DNA pull-down assays revealed that GATAe bound to different predicted GATA-binding sites and mutations of the different GATAe-binding sites identified two binding sites responsible for the promoter activity. The binding site B9, which is located near the transcription initiator site, has a major contribution on HaABCC2 expression. Also, DNA pull-down assays revealed that all other members of GATA TF family in H. armigera, besides GATAe, HaGATAa, HaGATAb, HaGATAc and HaGATAd also bound to the HaABCC2 promoter and decreased the GATAe dependent promoter activity. Finally, the potential participation in the regulation of HaABCC2 promoter of several TFs other than GATA TFs expressed in the midgut cells was analyzed. HaHR3 inhibited the GATAe dependent activity of the HaABCC2 promoter, while two other midgut-related TFs, HaCDX and HaSox21, also bound to the HaABCC2 promoter region and increased the GATAe dependent promoter activity. All these data showed that GATAe induces HaABCC2 expression by binding to HaGATAe binding sites in the promoter region and that additional TFs participate in modulating the HaGATAe-driven expression of HaABCC2.
Asunto(s)
Helicoverpa armigera , Insecticidas , Factores de Transcripción GATA , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/genética , Animales , Insecticidas/toxicidadRESUMEN
Metals play an important role in the development of diabetes mellitus (DM). The association of metals with diabetes among the Dong ethnicity in China remains poorly understood. The current study aimed to evaluate the association of single metal exposure and multi-metal co-exposure with DM risk. Urinary concentrations of arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, strontium, vanadium, and zinc were measured using inductively coupled plasma-mass spectrometry (ICP-MS) among 4479 Dong ethnic participants aged 30-79 years from the China Multi-Ethnic Cohort (CMEC) study. Based on tertiles, the metal exposure can be divided into three groups: low, middle, and high exposure. Multivariate logistic regression models and principal component analysis were performed to determine exposure to single-metal and multi-metal co-exposure in relation to DM. A decrease in risk of DM was associated with iron (OR = 0.78, 95% CI: 0.61-1.00 and 0.68, 0.53-0.88 for the middle and high vs. low) and strontium (OR = 0.87, 95% CI: 0.69-1.12 and 0.67, 0.51-0.86 for the middle and high vs. low), respectively. A principal component 3 (PC3) characterized by iron and strontium showed an inverse association with DM. A principal component 4 (PC4) characterized by manganese and lead positively associated with DM. Exposure to high concentrations of urinary iron and strontium may reduce the risk of diabetes mellitus. This study revealed an increase in the risk of diabetes mellitus by co-exposure to high concentrations of urinary manganese and lead.
Asunto(s)
Arsénico , Diabetes Mellitus , Humanos , Estudios de Cohortes , Manganeso/toxicidad , Etnicidad , Hierro , Estroncio , Diabetes Mellitus/epidemiología , Arsénico/toxicidad , Vanadio , China/epidemiologíaRESUMEN
AIMS: High resting heart rate (RHR), one abnormal manifestation of autonomic nervous system, is associated with metabolic disorders. However, the association between RHR and metabolic syndrome (MetS) and its components remains controversial. We aimed to explore the link between these two parameters. MATERIALS AND METHODS: The study included 6589 Dong adults (1434 cases of MetS) from the cross-sectional survey of the China Multi-Ethnic Cohort Study. Logistic regression model was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) and assess the association between RHR and MetS, clustered metabolic risk, and MetS components. Restricted cubic splines model was used to evaluate the dose response association. RESULTS: A positive association existed between RHR and MetS, and people in the highest RHR quartile had a higher MetS risk (OR 1.75 [95% CI 1.42-2.15]) than those in the lowest quartile. The clustered metabolic risk associated with RHR (p < 0.05). Furthermore, RHR was related to elevated blood pressure (BP), elevated triglycerides (TG) and elevated fasting plasma glucose (FPG); the ORs (95% CIs) for the highest versus lowest RHR quartile were 2.06 (1.75-2.43), 1.37 (1.17-1.62) and 2.53 (2.04-3.14), respectively. Similar results were found in sensitivity and subgroup analyses. Also, non-linear dose response association existed between RHR and MetS and elevated levels of BP, TG and FPG (p < 0.001). CONCLUSIONS: RHR was related to increased risk of MetS, three MetS components (elevated BP, elevated TG and elevated FPG) and the clustered metabolic risk. RHR may be a useful indicator for MetS.
Asunto(s)
Síndrome Metabólico , Adulto , China/epidemiología , Estudios de Cohortes , Estudios Transversales , Ayuno , Frecuencia Cardíaca , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/etiología , Factores de RiesgoRESUMEN
Two-dimensional (2D) metal-organic framework (MOF) nanosheets, with largely exposed surface area and highly accessible active sites, have emerged as a novel kind of sensing material. Here, a luminescent 2D MOF nanosheet was designed and synthesized by a facile top-down strategy based on a three-dimensional (3D) layered MOF {[Zn(H2L)(H2O)2]·H2O}n (Zn-MOF; H4L = 3,5-bis(3',5'-dicarboxyphenyl)-1H-1,2,4-triazole). With a large π-conjugated system and rigid planar structure, ligand H4L was elaborately selected to construct the bulk Zn-MOF, which can be readily exfoliated into 2D nanosheets, owing to the weak interlayer interactions and easy-to-release H2O molecules in the interspaces of 2D layers. Given the great threat posed to the ecological environment by anti-inflammatory drugs and pesticides, the developed luminescent Zn-MOF nanosheets were utilized to determine these organic pollutants, achieving highly selective and sensitive detection of diclofenac sodium (DCF) and tetramethylthiuram disulfide (TMTD). Compared to the detection limits of 3D Zn-MOF (7.72 ppm for DCF, 6.01 ppm for TMTD), the obviously lower detection limits for 2D Zn-MOF nanosheets toward DCF (0.20 ppm) and TMTD (0.18 ppm) further revealed that the largely exposed surface area with rigid planar structure and ultralarge π-conjugated system greatly accelerated electron transfer, which brought about a vast improvement in response sensitivity. The remarkable quenching performance for DCF and TMTD stems from a combined effect of photoinduced electron transfer and competitive energy absorption. The possible sensing mechanism was systematically investigated by the studies of powder X-ray diffraction, UV-vis, luminescence lifetime, and density functional theory calculations.