Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(8): 13946-13954, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859352

RESUMEN

Due to the wave nature of light, the diffraction pattern generated by an optical device is sensitive to the shift of wavelength. This fact significantly compromises the digital micromirror device (DMD) in applications, such as full-color holographic display and multi-color fluorescence microscopy. The existing dispersion compensation techniques for DMD involve adding diffractive elements, which causes a large amount of waste of optical energy. Here, we propose an energy-efficient dispersion compensation method, based on a dispersive prism, for DMD. This method simulates the diffraction pattern of the optical fields reflected from the DMD with an angular spectrum model. According to the simulation, a prism and a set of optical components are introduced to compensate for the angular dispersion of DMD-modulated optical fields. In the experiment, our method reduced the angular dispersion, between the 532 nm and 660 nm light beams, by a factor of ∼8.5.

2.
Opt Express ; 32(2): 2846-2855, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297803

RESUMEN

High-fidelity optical information transmission through strongly scattering media is challenging, but is crucial for the applications such as the free-space optical communication in a haze or fog. Binarizing optical information can somehow suppress the disruptions caused by light scattering. However, this method gives a compromised communication throughput. Here, we propose high-fidelity multiplexing anti-scattering transmission (MAST). MAST encodes multiple bits into a complex-valued pattern, loads the complex-valued pattern to an optical field through modulation, and finally employs a scattering matrix-assisted retrieval technique to reconstruct the original information from the speckle patterns. In our demonstration, we multiplexed three channels and MAST achieved a high-fidelity transmission of 3072 (= 1024× 3) bits data per transmission and average transmission error as small as 0.06%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA