Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 22(11): 3077-89, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23496771

RESUMEN

Studies on the classic shell colour and banding polymorphism of the land snail Cepaea played a crucial role in establishing the importance of natural selection in maintaining morphological variation. Cepaea is also a pre-eminent model for ecological genetics because the outward colour and banding phenotype is entirely genetically determined, primarily by a 'supergene' of at least five loci. Unfortunately, progress in understanding the evolution and maintenance of the Cepaea polymorphism stalled, partly because of a lack of genetic markers. With a view to re-establish Cepaea as a prominent model of molecular ecology, we made six laboratory crosses of Cepaea nemoralis, five of which segregated for shell ground colour (C) and the presence or absence of bands (B). First, scoring of colour and banding in 323 individuals found no recombination between the C and B loci of the supergene. Second, using restriction site-associated DNA sequencing (RAD-Seq) of two parents and 22 offspring, we identified 44 anonymous markers putatively linked to the colour (C) and banding (B) loci. The genotype of eleven of the most promising RAD-Seq markers was independently validated in the same 22 offspring, then up to a further 146 offspring were genotyped. The closest RAD-Seq markers scored are within ~0.6 centimorgan (cM) of the C-B supergene linkage group, with the combined loci together forming a 35.8 cM linkage map of markers that flank both sides of the Cepaea C-B supergene.


Asunto(s)
Exoesqueleto/fisiología , Pigmentación/genética , Caracoles/genética , Animales , Mapeo Cromosómico , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Polimorfismo de Nucleótido Simple , Recombinación Genética , Selección Genética , Análisis de Secuencia de ADN
2.
Curr Biol ; 26(5): 654-60, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26923788

RESUMEN

While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1 and 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4 and 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6 and 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8].


Asunto(s)
Tipificación del Cuerpo , Proteínas Fetales/genética , Lymnaea/genética , Proteínas de Microfilamentos/genética , Proteínas Nucleares/genética , Transducción de Señal , Xenopus laevis/genética , Animales , Proteínas Fetales/metabolismo , Forminas , Lymnaea/embriología , Lymnaea/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Xenopus laevis/embriología , Xenopus laevis/metabolismo
3.
Int J Dev Biol ; 58(6-8): 501-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25690965

RESUMEN

The early animal embryo is entirely reliant on maternal gene products for a 'jump-start' that transforms a transcriptionally inactive embryo into a fully functioning zygote. Despite extensive work on model species, it has not been possible to perform a comprehensive comparison of maternally-provisioned transcripts across the Bilateria because of the absence of a suitable dataset from the Lophotrochozoa. As part of an ongoing effort to identify the maternal gene that determines left-right asymmetry in snails, we have generated transcriptome data from 1 to 2-cell and ~32-cell pond snail (Lymnaea stagnalis) embryos. Here, we compare these data to maternal transcript datasets from other bilaterian metazoan groups, including representatives of the Ecydysozoa and Deuterostomia. We found that between 5 and 10% of all L. stagnalis maternal transcripts (~300-400 genes) are also present in the equivalent arthropod (Drosophila melanogaster), nematode (Caenorhabditis elegans), urochordate (Ciona intestinalis) and chordate (Homo sapiens, Mus musculus, Danio rerio) datasets. While the majority of these conserved maternal transcripts ("COMATs") have housekeeping gene functions, they are a non-random subset of all housekeeping genes, with an overrepresentation of functions associated with nucleotide binding, protein degradation and activities associated with the cell cycle. We conclude that a conserved set of maternal transcripts and their associated functions may be a necessary starting point of early development in the Bilateria. For the wider community interested in discovering conservation of gene expression in early bilaterian development, the list of putative COMATs may be useful resource.


Asunto(s)
Genes Esenciales/genética , Patrón de Herencia/genética , Lymnaea/embriología , Lymnaea/genética , Transcriptoma/genética , Animales , Caenorhabditis elegans/genética , Ciona intestinalis/genética , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA