Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Neurosci ; 39(29): 5773-5793, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101759

RESUMEN

Chronic pain is a serious debilitating disease for which effective treatment is still lacking. Acid-sensing ion channel 1a (ASIC1a) has been implicated in nociceptive processing at both peripheral and spinal neurons. However, whether ASIC1a also contributes to pain perception at the supraspinal level remains elusive. Here, we report that ASIC1a in ACC is required for thermal and mechanical hypersensitivity associated with chronic pain. ACC-specific genetic deletion or pharmacological blockade of ASIC1a reduced the probability of cortical LTP induction and attenuated inflammatory thermal hyperalgesia and mechanical allodynia in male mice. Using cell type-specific manipulations, we demonstrate that ASIC1a in excitatory neurons of ACC is a major player in cortical LTP and pain behavior. Mechanistically, we show that ASIC1a tuned pain-related cortical plasticity through protein kinase C λ-mediated increase of membrane trafficking of AMPAR subunit GluA1 in ACC. Importantly, postapplication of ASIC1a inhibitors in ACC reversed previously established nociceptive hypersensitivity in both chronic inflammatory pain and neuropathic pain models. These results suggest that ASIC1a critically contributes to a higher level of pain processing through synaptic potentiation in ACC, which may serve as a promising analgesic target for treatment of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease that still lacks effective therapy. Ion channels are good candidates for developing new analgesics. Here, we provide several lines of evidence to support an important role of cortically located ASIC1a channel in pain hypersensitivity through promoting long-term synaptic potentiation in the ACC. Our results indicate a promising translational potential of targeting ASIC1a to treat chronic pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Giro del Cíngulo/metabolismo , Isoenzimas/deficiencia , Neuralgia/metabolismo , Plasticidad Neuronal/fisiología , Dimensión del Dolor/métodos , Proteína Quinasa C/deficiencia , 6-Ciano 7-nitroquinoxalina 2,3-diona/administración & dosificación , Canales Iónicos Sensibles al Ácido/genética , Animales , Células Cultivadas , Giro del Cíngulo/efectos de los fármacos , Isoenzimas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microinyecciones/métodos , Neuralgia/genética , Neuralgia/prevención & control , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Dimensión del Dolor/efectos de los fármacos , Proteína Quinasa C/genética
2.
J Neurosci ; 38(37): 8060-8070, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30054392

RESUMEN

Anterior cingulate cortex (ACC) is known to play important roles in key brain functions such as pain perception, cognition, and emotion. Different forms of homosynaptic plasticity such as long-term potentiation (LTP) and long-term depression have been studied in ACC synapses. However, heterosynaptic plasticity such as synaptic tagging has not been reported. Here, we demonstrate synaptic tagging in the ACC of adult male mice by using a 64-channel multielectrode array recording system. Weak theta burst stimulation (TBS), normally inducing early-phase LTP or No-LTP in most of the activated channels, produced late phase-LTP (L-LTP) in a majority of channels when a strong TBS was applied earlier to a separate input within a certain time window. Similar to hippocampus, synaptic tagging in the ACC depends on the synthesis of new proteins. Tail amputation-induced peripheral injury caused a loss of this heterosynaptic L-LTP and occluded strong TBS-evoked L-LTP as well. Together, we provide the first report of the synaptic tagging-like phenomenon in the ACC of adult mice, and the loss of synaptic tagging to amputation may contribute to injury-related cognitive changes and phantom limb sensation and pain.SIGNIFICANCE STATEMENT ACC is an important cortical region involved in many brain functions. Previous studies have dissected the molecular mechanism of multiple types of homosynaptic plasticity of ACC synapses. Here, we report a novel form of heterosynaptic plasticity occurring in the ACC. This newly identified, protein synthesis-dependent neocortical synaptic tagging is sensitive to peripheral tail amputation injury and may provide basic mechanisms for synaptic pathophysiology of phantom pain and related cognitive changes.


Asunto(s)
Amputación Quirúrgica , Giro del Cíngulo/fisiología , Potenciación a Largo Plazo/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Sinapsis/fisiología , Cola (estructura animal) , Animales , Estimulación Eléctrica , Ratones
3.
J Neurosci ; 35(5): 2033-43, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653361

RESUMEN

Fragile X syndrome is a common inherited form of mental impairment. Fragile X mental retardation protein (FMRP) plays important roles in the regulation of synaptic protein synthesis, and loss of FMRP leads to deficits in learning-related synaptic plasticity and behavioral disability. Previous studies mostly focus on postsynaptic long-term potentiation (LTP) in Fmr1 knock-out (KO) mice. Here, we investigate the role of FMRP in presynaptic LTP (pre-LTP) in the adult mouse anterior cingulate cortex (ACC). Low-frequency stimulation induced LTP in layer II/III pyramidal neurons under the voltage-clamp mode. Paired-pulse ratio, which is a parameter for presynaptic changes, was decreased after the low-frequency stimulation in Fmr1 wild-type (WT) mice. Cingulate pre-LTP was abolished in Fmr1 KO mice. We also used a 64-electrode array system for field EPSP recording and found that the combination of low-frequency stimulation paired with a GluK1-containing kainate receptor agonist induced NMDA receptor-independent and metabotropic glutamate receptor-dependent pre-LTP in the WT mice. This potentiation was blocked in Fmr1 KO mice. Biochemical experiments showed that Fmr1 KO mice displayed altered translocation of protein kinase A subunits in the ACC. Our results demonstrate that FMRP plays an important role in pre-LTP in the adult mouse ACC, and loss of this pre-LTP may explain some of the behavioral deficits in Fmr1 KO mice.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Giro del Cíngulo/metabolismo , Potenciación a Largo Plazo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Masculino , Ratones , Ratones Noqueados , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores de Ácido Kaínico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
4.
Mol Pain ; 11: 25, 2015 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-25933605

RESUMEN

It has been reported that activated microglia plays important roles in chronic pain-related sensory signaling at the spinal cord dorsal horn. Less is known about the possible contribution of microglia to cortical plasticity that has been found to be important for chronic pain. In the present study, we used a 64-channel multi-electrode array recording system to investigate the role of microglia in cortical plasticity of the anterior cingulate cortex (ACC) in normal adult mice. We found that bath application of minocycline, an inhibitor of microglial activation, had no effect on postsynaptic LTP (post-LTP) induced by theta burst stimulation in the ACC. Furthermore, presynaptic LTP (pre-LTP) induced by the combination of low-frequency stimulation with a GluK1-containing kainate receptor agonist was also not affected. The spatial distribution of post-LTP or pre-LTP among the cingulate network is also unaltered by minocycline. Our results suggest that minocycline does not affect cingulate plasticity and neurons are the major player in pain-related cortical plasticity.


Asunto(s)
Envejecimiento/fisiología , Giro del Cíngulo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Minociclina/farmacología , Animales , Electrodos , Giro del Cíngulo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
5.
Mol Pain ; 10: 1, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24398034

RESUMEN

The insular cortex (IC) is an important forebrain structure involved in pain perception and taste memory formation. Using a 64-channel multi-electrode array system, we recently identified and characterized two major forms of synaptic plasticity in the adult mouse IC: long-term potentiation (LTP) and long-term depression (LTD). In this study, we investigate injury-related metaplastic changes in insular synaptic plasticity after distal tail amputation. We found that tail amputation in adult mice produced a selective loss of low frequency stimulation-induced LTD in the IC, without affecting (RS)-3,5-dihydroxyphenylglycine (DHPG)-evoked LTD. The impaired insular LTD could be pharmacologically rescued by priming the IC slices with a lower dose of DHPG application, a form of metaplasticity which involves activation of protein kinase C but not protein kinase A or calcium/calmodulin-dependent protein kinase II. These findings provide important insights into the synaptic mechanisms of cortical changes after peripheral amputation and suggest that restoration of insular LTD may represent a novel therapeutic strategy against the synaptic dysfunctions underlying the pathophysiology of phantom pain.


Asunto(s)
Amputación Quirúrgica , Corteza Cerebral/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Cola (estructura animal)/cirugía , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Cerebral/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estimulación Eléctrica , Glicina/análogos & derivados , Glicina/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Resorcinoles/farmacología , Transmisión Sináptica/efectos de los fármacos
6.
Sci Adv ; 10(33): eadn6272, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150998

RESUMEN

Chronic itch often clinically coexists with anxiety symptoms, creating a vicious cycle of itch-anxiety comorbidities that are difficult to treat. However, the neuronal circuit mechanisms underlying the comorbidity of anxiety in chronic itch remain elusive. Here, we report anxiety-like behaviors in mouse models of chronic itch and identify γ-aminobutyric acid-releasing (GABAergic) neurons in the lateral septum (LS) as the key player in chronic itch-induced anxiety. In addition, chronic itch is accompanied with enhanced activity and synaptic plasticity of excitatory projections from the thalamic nucleus reuniens (Re) onto LS GABAergic neurons. Selective chemogenetic inhibition of the Re → LS circuit notably alleviated chronic itch-induced anxiety, with no impact on anxiety induced by restraint stress. Last, GABAergic neurons in lateral hypothalamus (LH) receive monosynaptic inhibition from LS GABAergic neurons to mediate chronic itch-induced anxiety. These findings underscore the potential significance of the Re → LS → LH pathway in regulating anxiety-like comorbid symptoms associated with chronic itch.


Asunto(s)
Ansiedad , Neuronas GABAérgicas , Área Hipotalámica Lateral , Prurito , Animales , Ratones , Neuronas GABAérgicas/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Núcleos Talámicos de la Línea Media/metabolismo , Masculino , Conducta Animal , Vías Nerviosas , Plasticidad Neuronal , Núcleos Septales
7.
J Neurosci ; 32(33): 11318-29, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22895715

RESUMEN

Long-term depression (LTD) is a key form of synaptic plasticity important in learning and information storage in the brain. It has been studied in various cortical regions, including the anterior cingulate cortex (ACC). ACC is a crucial cortical region involved in such emotion-related physiological and pathological conditions as fear memory and chronic pain. In the present study, we used a multielectrode array system to map cingulate LTD in a spatiotemporal manner within the ACC. We found that low-frequency stimulation (1 Hz, 15 min) applied onto deep layer V induced LTD in layers II/III and layers V/VI. Cingulate LTD requires activation of metabotropic glutamate receptors (mGluRs), while L-type voltage-gated calcium channels and NMDA receptors also contribute to its induction. Peripheral amputation of the distal tail impaired ACC LTD, an effect that persisted for at least 2 weeks. The loss of LTD was rescued by priming ACC slices with activation of mGluR1 receptors by coapplying (RS)-3,5-dihydroxyphenylglycine and MPEP, a form of metaplasticity that involved the activation of protein kinase C. Our results provide in vitro evidence of the spatiotemporal properties of ACC LTD in adult mice. We demonstrate that tail amputation causes LTD impairment within the ACC circuit and that this can be rescued by activation of mGluR1.


Asunto(s)
Amputación Quirúrgica , Giro del Cíngulo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Biofisica , Biotinilación , Bloqueadores de los Canales de Calcio/farmacología , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Nimodipina/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Transmisión Sináptica/efectos de los fármacos , Cola (estructura animal)/inervación
8.
J Neurophysiol ; 110(2): 505-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23636718

RESUMEN

The insular cortex (IC) is widely believed to be an important forebrain structure involved in cognitive and sensory processes such as memory and pain. However, little work has been performed at the cellular level to investigate the synaptic basis of IC-related brain functions. To bridge the gap, the present study was designed to characterize the basic synaptic mechanisms for insular long-term potentiation (LTP). Using a 64-channel recording system, we found that an enduring form of late-phase LTP (L-LTP) could be reliably recorded for at least 3 h in different layers of IC slices after theta burst stimulation. The induction of insular LTP is protein synthesis dependent and requires activation of both GluN2A and GluN2B subunits of the NMDA receptor, L-type voltage-gated calcium channels, and metabotropic glutamate receptor 1. The paired-pulse facilitation ratio was unaffected by insular L-LTP induction, and expression of insular L-LTP required the recruitment of postsynaptic calcium-permeable AMPA receptors. Our results provide the first in vitro report of long-term multichannel recordings of L-LTP in the IC in adult mice and suggest its potential important roles in insula-related memory and chronic pain.


Asunto(s)
Corteza Cerebral/fisiología , Potenciación a Largo Plazo/fisiología , Animales , Anisomicina/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurofisiología/métodos , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología
9.
Mol Pain ; 9: 58, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24228737

RESUMEN

Voltage gated calcium channels (VGCCs) are well known for its importance in synaptic transmission in the peripheral and central nervous system. However, the role of different VGCCs in the anterior cingulate cortex (ACC) has not been studied. Here, we use a multi-electrode array recording system (MED64) to study the contribution of different types of calcium channels in glutamatergic excitatory synaptic transmission in the ACC. We found that only the N-type calcium channel blocker ω-conotoxin-GVIA (ω-Ctx-GVIA) produced a great inhibition of basal synaptic transmission, especially in the superficial layer. Other calcium channel blockers that act on L-, P/Q-, R-, and T-type had no effect. We also tested the effects of several neuromodulators with or without ω-Ctx-GVIA. We found that N-type VGCC contributed partially to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid- and (R)-Baclofen-induced synaptic inhibition. By contrast, the inhibitory effects of 2-Chloroadenosine and carbamoylcholine chloride did not differ with or without ω-Ctx-GVIA, indicating that they may act through other mechanisms. Our results provide strong evidence that N-type VGCCs mediate fast synaptic transmission in the ACC.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Giro del Cíngulo/metabolismo , Transmisión Sináptica/efectos de los fármacos , 2-Cloroadenosina/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Carbacol/farmacología , Giro del Cíngulo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , omega-Conotoxina GVIA/farmacología
10.
Eur J Neurosci ; 38(8): 3128-45, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23930740

RESUMEN

The insular cortex (IC) is known to play important roles in higher brain functions such as memory and pain. Activity-dependent long-term depression (LTD) is a major form of synaptic plasticity related to memory and chronic pain. Previous studies of LTD have mainly focused on the hippocampus, and no study in the IC has been reported. In this study, using a 64-channel recording system, we show for the first time that repetitive low-frequency stimulation (LFS) can elicit frequency-dependent LTD of glutamate receptor-mediated excitatory synaptic transmission in both superficial and deep layers of the IC of adult mice. The induction of LTD in the IC required activation of the N-methyl-d-aspartate (NMDA) receptor, metabotropic glutamate receptor (mGluR)5, and L-type voltage-gated calcium channel. Protein phosphatase 1/2A and endocannabinoid signaling are also critical for the induction of LTD. In contrast, inhibiting protein kinase C, protein kinase A, protein kinase Mζ or calcium/calmodulin-dependent protein kinase II did not affect LFS-evoked LTD in the IC. Bath application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine produced another form of LTD in the IC, which was NMDA receptor-independent and could not be occluded by LFS-induced LTD. Our studies have characterised the basic mechanisms of LTD in the IC at the network level, and suggest that two different forms of LTD may co-exist in the same population of IC synapses.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores , Depresión Sináptica a Largo Plazo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Antagonistas de Receptores de Cannabinoides/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Neuron ; 111(15): 2414-2431.e7, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37224813

RESUMEN

Pain and itch are two closely related but essentially distinct sensations that elicit different behavioral responses. However, it remains mysterious how pain and itch information is encoded in the brain to produce differential perceptions. Here, we report that nociceptive and pruriceptive signals are separately represented and processed by distinct neural ensembles in the prelimbic (PL) subdivision of the medial prefrontal cortex (mPFC) in mice. Pain- and itch-responsive cortical neural ensembles were found to significantly differ in electrophysiological properties, input-output connectivity profiles, and activity patterns to nociceptive or pruriceptive stimuli. Moreover, these two groups of cortical neural ensembles oppositely modulate pain- or itch-related sensory and emotional behaviors through their preferential projections to specific downstream regions such as the mediodorsal thalamus (MD) and basolateral amygdala (BLA). These findings uncover separate representations of pain and itch by distinct prefrontal neural ensembles and provide a new framework for understanding somatosensory information processing in the brain.


Asunto(s)
Complejo Nuclear Basolateral , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Dolor
12.
Neurosci Bull ; 39(5): 793-807, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36528690

RESUMEN

Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.


Asunto(s)
Giro del Cíngulo , Prurito , Ratones , Animales , Giro del Cíngulo/fisiología , Prurito/patología , Mesencéfalo , Corteza Cerebral/patología , Neuronas/patología
13.
J Neuroinflammation ; 9: 258, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23181395

RESUMEN

BACKGROUND: In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5)-extracellular signal-regulated kinase (ERK) signaling in this process. METHODS: Complete Freund's adjuvant (CFA) was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK) and mGluR5 in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t.) route. Local inflammatory responses were verified by tongue histology. RESULTS: Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. CONCLUSIONS: The present study constructed a new animal model of inflammatory tongue pain in rodents, and demonstrated pivotal roles of the mGluR5-pERK signaling in the development of mechanical and heat hypersensitivity that evolved in the inflamed tongue. This tongue-inflamed model might be useful for future studies to further elucidate molecular and cellular mechanisms of pathological tongue pain such as burning mouth syndrome.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Dolor/patología , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Núcleo Caudal del Trigémino/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Electromiografía , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Flavonoides/farmacología , Adyuvante de Freund/efectos adversos , Lateralidad Funcional , Glositis/inducido químicamente , Glositis/complicaciones , Glicina/análogos & derivados , Glicina/farmacología , Hiperalgesia/fisiopatología , Masculino , Dolor/etiología , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Fenilacetatos/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Receptor del Glutamato Metabotropico 5 , Región Sacrococcígea/patología , Transducción de Señal/efectos de los fármacos , Lengua/patología
14.
Nat Commun ; 13(1): 5540, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130959

RESUMEN

Threat and extinction memories are crucial for organisms' survival in changing environments. These memories are believed to be encoded by separate ensembles of neurons in the brain, but their whereabouts remain elusive. Using an auditory fear-conditioning and extinction paradigm in male mice, here we discovered that two distinct projection neuron subpopulations in physical proximity within the insular cortex (IC), targeting the central amygdala (CeA) and nucleus accumbens (NAc), respectively, to encode fear and extinction memories. Reciprocal intracortical inhibition of these two IC subpopulations gates the emergence of either fear or extinction memory. Using rabies-virus-assisted tracing, we found IC-NAc projection neurons to be preferentially innervated by intercortical inputs from the orbitofrontal cortex (OFC), specifically enhancing extinction to override fear memory. These results demonstrate that IC serves as an operation node harboring distinct projection neurons that decipher fear or extinction memory under the top-down executive control from OFC.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Neuronas/fisiología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología
15.
Mol Pain ; 7: 75, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21952000

RESUMEN

BACKGROUND: The purpose of the present study was to elucidate the mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) neurons to heat or cold stimulation of the orofacial region following glutamate (Glu) injection. RESULTS: Glu application to the tongue or whisker pad skin caused an enhancement of head-withdrawal reflex and extracellular signal-regulated kinase (ERK) phosphorylation in Vc-C2 neurons. Head-withdrawal reflex and ERK phosphorylation were also enhanced following cold stimulation of the tongue but not whisker pad skin in Glu-injected rats, and the head-withdrawal reflex and ERK phosphorylation were enhanced following heat stimulation of the tongue or whisker pad skin. The enhanced head-withdrawal reflex and ERK phosphorylation after heat stimulation of the tongue or whisker pad skin, and those following cold stimulation of the tongue but not whisker pad skin were suppressed following ionotropic glutamate receptor antagonists administration into the tongue or whisker pad skin. Furthermore, intrathecal administration of MEK1/2 inhibitor PD98059 caused significant suppression of enhanced head-withdrawal reflex in Glu-injected rats, heat head-withdrawal reflex in the rats with Glu injection into the tongue or whisker pad skin and cold head-withdrawal reflex in the rats with Glu injection into the tongue. CONCLUSIONS: The present findings suggest that peripheral Glu receptor mechanisms may contribute to cold hyperalgesia in the tongue but not in the facial skin, and also contribute to heat hyperalgesia in the tongue and facial skin, and that the mitogen-activated protein kinase cascade in Vc-C2 neurons may be involved in these Glu-evoked hyperalgesic effects.


Asunto(s)
Hiperalgesia/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Cara/inervación , Cara/patología , Flavonoides/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Ionotrópicos de Glutamato/antagonistas & inhibidores , Valina/análogos & derivados , Valina/farmacología
16.
Neurosci Bull ; 37(2): 145-165, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32996060

RESUMEN

Acid-sensing ion channels (ASICs), the main H+ receptors in the central nervous system, sense extracellular pH fluctuations and mediate cation influx. ASIC1a, the major subunit responsible for acid-activated current, is widely expressed in brain neurons, where it plays pivotal roles in diverse functions including synaptic transmission and plasticity. However, the underlying molecular mechanisms for these functions remain mysterious. Using extracellular epitope tagging and a novel antibody recognizing the hASIC1a ectodomain, we examined the membrane targeting and dynamic trafficking of hASIC1a in cultured cortical neurons. Surface hASIC1a was distributed throughout somata and dendrites, clustered in spine heads, and co-localized with postsynaptic markers. By extracellular pHluorin tagging and fluorescence recovery after photobleaching, we detected movement of hASIC1a in synaptic spine heads. Single-particle tracking along with use of the anti-hASIC1a ectodomain antibody revealed long-distance migration and local movement of surface hASIC1a puncta on dendrites. Importantly, enhancing synaptic activity with brain-derived neurotrophic factor accelerated the trafficking and lateral mobility of hASIC1a. With this newly-developed toolbox, our data demonstrate the synaptic location and high dynamics of functionally-relevant hASIC1a on the surface of excitatory synapses, supporting its involvement in synaptic functions.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Neuronas , Canales Iónicos Sensibles al Ácido/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
17.
Autophagy ; 16(3): 531-547, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204559

RESUMEN

Mutations in the macroautophagy/autophagy gene WDR45 cause ß-propeller protein-associated neurodegeneration (BPAN); however the molecular and cellular mechanism of the disease process is largely unknown. Here we generated constitutive wdr45 knockout (KO) mice that displayed cognitive impairments, abnormal synaptic transmission and lesions in several brain regions. Immunohistochemistry analysis showed loss of neurons in prefrontal cortex and basal ganglion in aged mice, and increased apoptosis in prefrontal cortex, recapitulating a hallmark of neurodegeneration. Quantitative proteomic analysis showed accumulation of endoplasmic reticulum (ER) proteins in KO mouse. At the cellular level, accumulation of ER proteins due to WDR45 deficiency resulted in increased ER stress and impaired ER quality control. The unfolded protein response (UPR) was elevated through ERN1/IRE1 or EIF2AK3/PERK pathway, and eventually led to neuronal apoptosis. Suppression of ER stress or activation of autophagy through MTOR inhibition alleviated cell death. Thus, the loss of WDR45 cripples macroautophagy machinery in neurons and leads to impairment in organelle autophagy, which provides a mechanistic understanding of cause of BPAN and a potential therapeutic strategy to treat this genetic disorder.Abbreviations: 7-ADD: 7-aminoactinomycin D; ASD: autistic spectrum disorder; ATF6: activating transcription factor 6; ATG: autophagy-related; BafA1: bafilomycin A1; BCAP31: B cell receptor associated protein 31; BPAN: ß-propeller protein-associated neurodegeneration; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CDIPT: CDP-diacylglycerol-inositol 3-phosphatidyltransferase (phosphatidylinositol synthase); DDIT3/CHOP: DNA-damage inducible transcript 3; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GFP: green fluorescent protein; HIP: hippocampus; HSPA5/GRP78: heat shock protein family A (HSP70) member 5; KO: knockout; LAMP1: lysosomal-associated membrane 1; mEPSCs: miniature excitatory postsynaptic currents; MG132: N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal; MIB: mid-brain; MTOR: mechanistic target of rapamycin kinase; PCR: polymerase chain reaction; PFA: paraformaldehyde; PFC: prefrontal cortex; PRM: parallel reaction monitoring; RBFOX3/NEUN: RNA binding protein, fox-1 homolog [C. elegans] 3; RTN3: reticulon 3; SEC22B: SEC22 homolog B, vesicle trafficking protein; SEC61B: SEC61 translocon beta subunit; SEM: standard error of the mean; SNR: substantia nigra; SQSTM1/p62: sequestosome 1; TH: tyrosine hydroxylase; Tm: tunicamycin; TMT: tandem mass tag; TUDCA: tauroursodeoxycholic acid; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labeling; UPR: unfolded protein response; WDR45: WD repeat domain 45; WT: wild type; XBP1: X-box binding protein 1.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Degeneración Nerviosa/patología , Neuronas/patología , Animales , Apoptosis , Autofagia , Secuencia de Bases , Encéfalo/patología , Muerte Celular , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Lisosomas/metabolismo , Ratones Noqueados , Degeneración Nerviosa/complicaciones , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Mapas de Interacción de Proteínas , Proteolisis
18.
Cell Rep ; 33(6): 108369, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176141

RESUMEN

Nerve injury in somatosensory pathways may lead to neuropathic pain, which affects the life quality of ∼8% of people. Long-term enhancement of excitatory synaptic transmission along somatosensory pathways contributes to neuropathic pain. Caspase 3 (Casp3) plays a non-apoptotic role in the hippocampus and regulates internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. Whether Casp3-AMPAR interaction is involved in the maintenance of peripheral hypersensitivity after nerve injury remained unknown. Here, we show that nerve injury suppresses long-term depression (LTD) and downregulates Casp3 in the anterior cingulate cortex (ACC). Interfering with interactions between Casp3 and AMPAR subunits or reducing Casp3 activity in the ACC suppresses LTD induction and causes peripheral hypersensitivity. Overexpression of Casp3 restores LTD and reduces peripheral hypersensitivity after nerve injury. We reveal how Casp3 is involved in the maintenance of peripheral hypersensitivity. Our findings suggest that restoration of LTD via Casp3 provides a therapeutic strategy for neuropathic pain management.


Asunto(s)
Caspasa 3/metabolismo , Depresión/genética , Giro del Cíngulo/fisiopatología , Neuralgia/fisiopatología , Humanos
19.
Mol Pain ; 5: 55, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19772643

RESUMEN

BACKGROUND: Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. RESULTS: On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 x 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of persistent nociception, while that in naïve or saline control state was not affected. All these changes in synaptic connection and function, confirmed by the 2-dimentional current source density imaging, were found to be highly correlated with peripheral persistent nociception since pre-blockade of nociceptive impulses could eliminate all of them. Finally, the initial pharmacological investigation showed that AMPA/KA glutamate receptors might play more important roles in mediation of pain-associated spatiotemporal plasticity than NMDA receptors. CONCLUSION: Peripheral persistent nociception produces great impact upon the higher brain structures that lead to not only temporal plasticity, but also spatial plasticity of synaptic connection and function in the HF. The spatial plasticity of synaptic activities is more complex than the temporal plasticity, comprising of enlargement of synaptic connection size at network level, deformed fEPSP at local circuit level and, increased synaptic efficacy at cellular level. In addition, the multi-synaptic model established in the present investigation may open a new avenue for future studies of pain-related brain dysfunctions at the higher level of the neuromatrix.


Asunto(s)
Electrofisiología/métodos , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Nociceptores/metabolismo , Transmisión Sináptica/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Electrodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Plasticidad Neuronal/efectos de los fármacos , Dolor/fisiopatología , Vía Perforante/efectos de los fármacos , Vía Perforante/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
20.
Pharmacol Res ; 59(5): 290-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19416628

RESUMEN

Although the postsynaptic events responsible for development of pathological pain have been intensively studied, the relative contribution of presynaptic neurotransmitters to the whole process remains less elucidated. In the present investigation, we sought to measure temporal changes in spinal release of both excitatory amino acids (EAAs, glutamate and aspartate) and inhibitory amino acids (IAAs, glycine, ?-aminobutyric acid and taurine) in response to peripheral inflammatory pain state. The results showed that following peripheral chemical insult induced by subcutaneous bee venom (BV) injection, there was an initial, parallel increase in spinal release of both EAAs and IAAs, however, the balance between them was gradually disrupted when pain persisted longer, with EAAs remaining at higher level but IAAs at a level below the baseline. Moreover, the EAAs-IAAs imbalance at the spinal level was dependent upon the ongoing activity from the peripheral injury site. Intrathecal blockade of ionotropic (NMDA and non-NMDA) and metabotropic (mGluRI, II, III) glutamate receptors, respectively, resulted in a differential inhibition of BV-induced different types of pain (persistent nociception vs. hyperalgesia, or thermal vs. mechanical hyperalgesia), implicating that spinal antagonism of any specific glutamate receptor subtype fails to block all types of pain-related behaviors. This result provides a new line of evidence emphasizing an importance of restoration of EAAs-IAAs balance at the spinal level to prevent persistence or chronicity of pain.


Asunto(s)
Aminoácidos/metabolismo , Dolor/metabolismo , Médula Espinal/metabolismo , Animales , Venenos de Abeja , Conducta Animal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Aminoácidos Excitadores/metabolismo , Calor , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Dolor/inducido químicamente , Dolor/fisiopatología , Umbral del Dolor/efectos de los fármacos , Estimulación Física , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA