Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 18(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110932

RESUMEN

The development of connected health devices has allowed for a more accurate assessment of a person's state under free-living conditions. In this work, we use two mobile sensing devices and investigate the correlation between individual's resting metabolic rate (RMR) and volatile organic compounds (VOCs) exposure levels. A total of 17 healthy, young, and sedentary office workers were recruited, measured for RMR with a mobile indirect calorimetry (IC) device, and compared with their corresponding predicted RMR values from the Academy of Nutrition and Dietetics' recommended epidemiological equation, the Mifflin⁻St Jeor equation (MSJE). Individual differences in the RMR values from the IC device and the epidemiological equation were found, and the subjects' RMRs were classified as normal, high, or low based on a cut-off of ±200 kcal/day difference with respect to the predicted value. To study the cause of the difference, VOCs exposure levels of each participant's daytime working environment and nighttime resting environment were assessed using a second mobile sensing device for VOCs exposure detection. The results showed that all sedentary office workers had a low VOCs exposure level (<2 ppmC), and there was no obvious correlation between VOCs exposure and the RMR difference. However, an additional participant who was a worker in an auto repair shop, showed high VOCs exposure with respect to the sedentary office worker population and a significant difference between measured and predicted RMR, with a low RMR of 500 kcal/day difference. The mobile sensing devices have been demonstrated to be suitable for the assessment of direct information of human health⁻environment interactions at free-living conditions.


Asunto(s)
Metabolismo Basal/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo Ambulatorio/instrumentación , Compuestos Orgánicos Volátiles/efectos adversos , Adulto , Calorimetría Indirecta , Ambiente , Femenino , Voluntarios Sanos , Humanos , Japón , Masculino , Conducta Sedentaria , Adulto Joven
2.
IEEE J Transl Eng Health Med ; 6: 2800610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30112251

RESUMEN

This paper introduces a wireless, solid-state, portable, and automated device capable of measuring the total ammonia [ammonia (NH3) and ammonium (NH4+)] levels of fluids, including biological samples. This device reliably measures the total ammonia of biological samples (e.g., urine) faster than the current ammonia quantification techniques. Medical professionals typically estimate NH4+ levels using error-prone indirect measurement techniques (i.e., urine anion gap), which are time-consuming and are seldom suitable for periodic measurements. Several instantaneous measurements of total ammonia levels in a patient urine could be utilized as an early warning for both acid-base and/or potassium disturbances. Given the device's operation mechanism, it is able to quantify the total ammonia concentration within a biological sample in only 5 s and can simultaneously transmit data to other devices via Bluetooth. The analytical operation demonstrated high sensitivity, high specificity, fast reversibility, rapid response time, and has enabled the accurate determination of total ammonia concentration in urine samples produced by subjects who had consumed diets of variable protein compositions.

3.
ACS Sens ; 2(11): 1662-1668, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29057647

RESUMEN

A volatile organic compounds (VOC) sensor based on molecularly imprinted polymer (MIP) modified quartz tuning fork (QTF) has been developed. In this paper, the stability of the modified sensor as a function of the MIP composition, and the temperature effect of the analyte adsorption on the sensing transduction mechanism are evaluated. By mixing MIP and PS together, the stability was improved. A target analyte, o-xylene, was chosen as the VOC model to study the sensor response in a temperature range of 6-40 °C. Langmuir model fitted adsorption isotherms were used for thermodynamic analysis. The changes in the sensitivity of the QTF sensor to temperature rendered different behaviors. For a freshly modified QTF sensor, the adsorption response increased with increasing temperature, while for an aged QTF sensor, the adsorption response decreased with increasing temperature. The results indicated that the enthalpy change of the MIP and PS composition sensing material changes from positive to negative over the course of aging. The characterization of the reaction enabled the definition of sensor calibration conditions and stable sensor performance in field testing conditions.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Cuarzo/química , Compuestos Orgánicos Volátiles/análisis , Adsorción , Impresión Molecular , Polímeros/síntesis química , Polímeros/química , Temperatura , Termodinámica , Factores de Tiempo , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA