Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Anal Chem ; 95(14): 5867-5876, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972215

RESUMEN

Characterization of antibody charge heterogeneity is an important task for antibody drug development. Recently, a correlation between acidic charge heterogeneity and metal-catalyzed oxidation has been observed for antibody drugs. However, to date, the acidic variants induced by metal-catalyzed oxidation have not been elucidated. In addition, it is challenging to satisfactorily explain the induced acidic charge heterogeneity, as the existing analytical workflows, which relied on either untargeted or targeted peptide mapping analysis, could lead to incomplete identification of the acidic variants. In this work, we present a new characterization workflow by combining untargeted and targeted analyses to thoroughly identify and characterize the induced acidic variants in a highly oxidized IgG1 antibody. As a part of this workflow, a tryptic peptide mapping method was also developed for accurate determination of the relative extent of site-specific carbonylation, where a new hydrazone reduction procedure was established to minimize under-quantitation artifacts caused by incomplete reduction of hydrazones during sample preparation. In summary, we identified 28 site-specific oxidation products, which are located on 26 residues and of 11 different modification types, as the sources of the induced acidic charge heterogeneity. Many of the oxidation products were reported for the first time in antibody drugs. More importantly, this study provides new insights to understanding acidic charge heterogeneity of antibody drugs in the biotechnology industry. Additionally, the characterization workflow presented in this study can be applied as a platform approach in the biotechnology industry to better address the need for in-depth characterization of antibody charge variants.


Asunto(s)
Ácidos , Anticuerpos Monoclonales , Anticuerpos Monoclonales/química , Proteínas Recombinantes/química , Oxidación-Reducción , Catálisis
2.
Anal Chem ; 92(1): 1582-1588, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31815436

RESUMEN

Bispecific antibodies (BsAbs) have drawn increasing interest in the biopharmaceutical industry due to their advantage to bind two distinct antigens simultaneously. The knob-into-hole approach is an effective way to produce bispecific antibodies by driving heterodimerization with mutations in the CH3 domain of each half antibody. To better understand the conformational impact by the knob and hole mutations, we combined size-exclusion chromatography (SEC), differential scanning calorimetry (DSC), and hydrogen-deuterium exchange mass spectrometry (H/D exchange MS), to characterize the global and peptide-level conformational changes. We found no significant alteration in structure or conformational dynamics induced by the knob-into-hole framework, and the conformational stability is similar to the wild-type (WT) IgG4 molecules (except for some small difference in the CH3 domain) expressed in E. coli. Functional studies including antigen-binding and neonatal fragment crystallizable (Fc) receptor (FcRn) binding demonstrated no difference between the knob-into-hole and WT IgG4 molecules in E. coli.


Asunto(s)
Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Rastreo Diferencial de Calorimetría , Cromatografía en Gel , Escherichia coli/genética , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Inmunoglobulina G/química , Modelos Moleculares , Mutación , Conformación Proteica
3.
Biochemistry ; 57(45): 6404-6415, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30387993

RESUMEN

Cadherins are calcium-dependent, transmembrane adhesion molecules that assemble through direct noncovalent association of their N-terminal extracellular modular domains. As the transmembrane component of adherens junctions, they indirectly link adherent cells' actin cytoskeletons. Here, we investigate the most distal extracellular domain of neural cadherin (N-cadherin), a protein required at excitatory synapses, the site of long-term potentiation. This domain is the site of the adhesive interface, and it forms a dimer spontaneously without binding calcium, a surprising finding given that calcium binding is required for proper physiological function. A critical tryptophan at position 2, W2, provides a spectroscopic probe for the "closed" monomer and strand-swapped dimer. Spectroscopic studies show that W2 remains docked in the two forms but has a different apparent interaction with the hydrophobic pocket. Size-exclusion chromatography was used to measure the levels of the monomer and dimer over time to study the kinetics and equilibria of the unexpected spontaneous dimer formation ( Kd = 130 µM; τ = 2 days at 4 °C). Our results support the idea that NCAD1 is missing critical contacts that facilitate the rapid exchange of the ßA-strand. Furthermore, the monomer and dimer have equivalent and exceptionally high intrinsic stability for a 99-residue Ig-like domain with no internal disulfides ( Tm = 77 °C; Δ H = 85 kcal/mol). Ultimately, a complete analysis of synapse dynamics requires characterization of the kinetics and equilibria of N-cadherin. The studies reported here take a reductionist approach to understanding the essential biophysics of an atypical Ig-like domain that is the site of the adhesive interface of N-cadherin.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Conformación Proteica , Multimerización de Proteína , Calcio , Humanos , Cinética , Modelos Moleculares , Triptófano/química , Triptófano/metabolismo
4.
Biochemistry ; 57(10): 1632-1639, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29425029

RESUMEN

Human glucokinase (GCK) acts as the body's primary glucose sensor and plays a critical role in glucose homeostatic maintenance. Gain-of-function mutations in gck produce hyperactive enzyme variants that cause congenital hyperinsulinism. Prior biochemical and biophysical studies suggest that activated disease variants can be segregated into two mechanistically distinct classes, termed α-type and ß-type. Steady-state viscosity variation studies indicate that the kcat values of wild-type GCK and an α-type variant are partially diffusion-limited, whereas the kcat value of a ß-type variant is viscosity-independent. Transient-state chemical quench-flow analyses demonstrate that wild-type GCK and the α-type variant display burst kinetics, whereas the ß-type variant lacks a burst phase. Comparative hydrogen-deuterium exchange mass spectrometry of unliganded enzymes demonstrates that a disordered active site loop, which folds upon binding of glucose, is protected from exchange in the α-type variant. The α-type variant also displays an increased level of exchange within a ß-strand located near the enzyme's hinge region, which becomes more solvent-exposed upon glucose binding. In contrast, ß-type activation causes no substantial difference in global or local exchange relative to that of unliganded, wild-type GCK. Together, these results demonstrate that α-type activation results from a shift in the conformational ensemble of unliganded GCK toward a state resembling the glucose-bound conformation, whereas ß-type activation is attributable to an accelerated rate of product release. This work elucidates the molecular basis of naturally occurring, activated GCK disease variants and provides insight into the structural and dynamic origins of GCK's unique kinetic cooperativity.


Asunto(s)
Hiperinsulinismo Congénito/enzimología , Glucoquinasa/metabolismo , Activación Enzimática , Humanos , Cinética , Espectrometría de Masas
5.
Sensors (Basel) ; 17(10)2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29023385

RESUMEN

In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

6.
Methods Enzymol ; 685: 433-459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37245911

RESUMEN

Allosteric regulation of protein function is ubiquitous in biology. Allostery originates from ligand-mediated alterations in polypeptide structure and/or dynamics, which produce a cooperative kinetic or thermodynamic response to changing ligand concentrations. Establishing a mechanistic description of individual allosteric events requires both mapping the relevant changes in protein structure and quantifying the rates of differential conformational dynamics in the absence and presence of effectors. In this chapter, we describe three biochemical approaches to understand the dynamic and structural signatures of protein allostery using the well-established cooperative enzyme glucokinase as a case study. The combined application of pulsed proteolysis, biomolecular nuclear magnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry offers complementary information that can used to establish molecular models for allosteric proteins, especially when differential protein dynamics are involved.


Asunto(s)
Glucoquinasa , Proteínas , Humanos , Glucoquinasa/metabolismo , Ligandos , Proteínas/química , Modelos Moleculares , Espectroscopía de Resonancia Magnética , Regulación Alostérica , Conformación Proteica
7.
Front Immunol ; 14: 1260446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790943

RESUMEN

Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells. Hence, understanding the impact of individual mAb proteoforms on the binding to FcγRIIa, and its different allotypes, is crucial for defining meaningful critical quality attributes (CQAs). Here, we report a function-structure based approach guided by novel FcγRIIa affinity chromatography-mass spectrometry (AC-MS) assays to assess individual IgG1 proteoforms. This allowed to unravel allotype-specific differences of IgG1 proteoforms on FcγRIIa binding. FcγRIIa AC-MS confirmed and refined structure-function relationships of IgG1 glycoform interactions. For example, the positive impact of afucosylation was higher than galactosylation for FcγRIIa Arg compared to FcγRIIa His. Moreover, we observed FcγRIIa allotype-opposing and IgG1 proteoform integrity-dependent differences in the binding response of stress-induced IgG1 proteoforms comprising asparagine 325 deamidation. The FcγRIIa-allotype dependent binding differences resolved by AC-MS were in line with functional ADCP-surrogate bioassay models. The molecular basis of the observed allotype specificity and proteoform selectivity upon asparagine 325 deamidation was elucidated using molecular dynamics. The observed differences were attributed to the contributions of an inter-molecular salt bridge between IgG1 and FcγRIIa Arg and the contribution of an intra-molecular hydrophobic pocket in IgG1. Our work highlights the unprecedented structural and functional resolution of AC-MS approaches along with predictive biological significance of observed affinity differences within relevant cell-based methods. This makes FcγRIIa AC-MS an invaluable tool to streamline the CQA assessment of therapeutic mAbs.


Asunto(s)
Asparagina , Inmunoglobulina G , Humanos , Anticuerpos Monoclonales , Fagocitosis
8.
Ultrasonics ; 123: 106701, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35189524

RESUMEN

Ultrasound (US) imaging is used to assess cardiac disease by assessing the geometry and function of the heart utilizing its high spatial and temporal resolution. However, because of physical constraints, drawbacks of US include limited field-of-view, refraction, resolution and contrast anisotropy. These issues cannot be resolved when using a single probe. Here, an interleaved multi-perspective 2-D US imaging system was introduced, aiming at improved imaging of the left ventricle (LV) of the heart by acquiring US data from two separate phased array probes simultaneously at a high frame rate. In an ex-vivo experiment of a beating porcine heart, parasternal long-axis and apical views of the left ventricle were acquired using two phased array probes. Interleaved multi-probe US data were acquired at a frame rate of 170 frames per second (FPS) using diverging wave imaging under 11 angles. Image registration and fusion algorithms were developed to align and fuse the US images from two different probes. First- and second-order speckle statistics were computed to characterize the resulting probability distribution function and point spread function of the multi-probe image data. First-order speckle analysis showed less overlap of the histograms (reduction of 34.4%) and higher contrast-to-noise ratio (CNR, increase of 27.3%) between endocardium and myocardium in the fused images. Autocorrelation results showed an improved and more isotropic resolution for the multi-perspective images (single-perspective: 0.59 mm × 0.21 mm, multi-perspective: 0.35 mm × 0.18 mm). Moreover, mean gradient (MG) (increase of 74.4%) and entropy (increase of 23.1%) results indicated that image details of the myocardial tissue can be better observed after fusion. To conclude, interleaved multi-perspective high frame rate US imaging was developed and demonstrated in an ex-vivo experimental setup, revealing enlarged field-of-view, and improved image contrast and resolution of cardiac images.


Asunto(s)
Algoritmos , Ecocardiografía , Animales , Corazón/diagnóstico por imagen , Fantasmas de Imagen , Porcinos , Ultrasonografía
9.
Bosn J Basic Med Sci ; 22(6): 872-881, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35699749

RESUMEN

Interleukin-1 receptor-associated kinase 1/4 (IRAK1/4) is the main kinase of the Toll-like receptor (TLR)-mediated pathway, considered a new target for treating inflammatory diseases. Studies showed a significant correlation between TLRs and inflammatory responses in ulcerative colitis (UC). Therefore, in this study, after inducing experimental colitis in mice with 3% dextran sulfate sodium (DSS), different concentrations of IRAK1/4 inhibitors were administered intraperitoneally. Then, the disease activity index was assessed, including the degree of pathological damage, by HE staining. Subsequently, while western blotting detected the TLR4/NF-κB pathway and intestinal barrier protein expression (Zonula-1, Occludin, Claudin-1, JAM-A), real-time polymerase chain reaction (RT-PCR) detected the mRNA expression levels of IRAK1/4 and mucin1/2. Furthermore, the expression levels of Zonula-1 and occludin were detected by immunofluorescence, including the plasma FITC-dextran 4000 concentration, to evaluate intestinal barrier permeability. However, ELISA measured the expression of inflammatory factors to reflect intestinal inflammation in mice. Investigations showed that the IRAK 1/4 inhibitor significantly reduced clinical symptoms and pathological DSS-induced colitis damage in mice and then inhibited the cytoplasmic and nuclear translocation of NF-κB p65, including the phosphorylation of IκBα and reduction in downstream inflammatory factor production. Therefore, we established that the IRAK1/4 inhibitor effectively improves colitis induced by DSS, partly by inhibiting the TLR4/NF-κB pathway, reducing inflammation, and maintaining the integrity of the colonic barrier.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Claudina-1/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Ocludina/metabolismo , ARN Mensajero , Transducción de Señal , Receptor Toll-Like 4/metabolismo
10.
MAbs ; 13(1): 1893427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33682619

RESUMEN

Fc galactosylation is a critical quality attribute for anti-tumor recombinant immunoglobulin G (IgG)-based monoclonal antibody (mAb) therapeutics with complement-dependent cytotoxicity (CDC) as the mechanism of action. Although the correlation between galactosylation and CDC has been known, the underlying structure-function relationship is unclear. Heterogeneity of the Fc N-glycosylation produced by Chinese hamster ovary (CHO) cell culture biomanufacturing process leads to variable CDC potency. Here, we derived a kinetic model of galactose transfer reaction in the Golgi apparatus and used this model to determine the correlation between differently galactosylated species from CHO cell culture process. The model was validated by a retrospective data analysis of more than 800 historical samples from small-scale and large-scale CHO cell cultures. Furthermore, using various analytical technologies, we discovered the molecular basis for Fc glycan terminal galactosylation changing the three-dimensional conformation of the Fc, which facilitates the IgG1 hexamerization, thus enhancing C1q avidity and subsequent complement activation. Our study offers insight into the formation of galactosylated species, as well as a novel three-dimensional understanding of the structure-function relationship of terminal galactose to complement activation in mAb therapeutics.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Activación de Complemento/efectos de los fármacos , Complemento C1q/agonistas , Citotoxicidad Inmunológica/efectos de los fármacos , Galactosa/metabolismo , Fragmentos Fc de Inmunoglobulinas/farmacología , Inmunoglobulina G/farmacología , Procesamiento Proteico-Postraduccional , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Células CHO , Complemento C1q/metabolismo , Cricetulus , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Cinética , Modelos Biológicos , Multimerización de Proteína , Relación Estructura-Actividad
11.
Structure ; 25(10): 1519-1529.e4, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28919439

RESUMEN

The Saccharomyces cerevisiae (Sc) R2TP complex affords an Hsp90-mediated and nucleotide-driven chaperone activity to proteins of small ribonucleoprotein particles (snoRNPs). The current lack of structural information on the ScR2TP complex, however, prevents a mechanistic understanding of this biological process. We characterized the structure of the ScR2TP complex made up of two AAA+ ATPases, Rvb1/2p, and two Hsp90 binding proteins, Tah1p and Pih1p, and its interaction with the snoRNP protein Nop58p by a combination of analytical ultracentrifugation, isothermal titration calorimetry, chemical crosslinking, hydrogen-deuterium exchange, and cryoelectron microscopy methods. We find that Pih1p-Tah1p interacts with Rvb1/2p cooperatively through the nucleotide-sensitive domain of Rvb1/2p. Nop58p further binds Pih1p-Tahp1 on top of the dome-shaped R2TP. Consequently, nucleotide binding releases Pih1p-Tah1p from Rvb1/2p, which offers a mechanism for nucleotide-driven binding and release of snoRNP intermediates.


Asunto(s)
Chaperonas Moleculares/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Rastreo Diferencial de Calorimetría , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
12.
Contrast Media Mol Imaging ; 10(6): 446-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26108564

RESUMEN

Acidosis within tumor and kidney tissues has previously been quantitatively measured using a molecular imaging technique known as acidoCEST MRI. The previous studies used iopromide and iopamidol, two iodinated contrast agents that are approved for clinical CT diagnoses and have been repurposed for acidoCEST MRI studies. We aimed to compare the performance of the two agents for measuring pH by optimizing image acquisition conditions, correlating pH with a ratio of CEST effects from an agent, and evaluating the effects of concentration, endogenous T1 relaxation time and temperature on the pH-CEST ratio correlation for each agent. These results showed that the two agents had similar performance characteristics, although iopromide produced a pH measurement with a higher dynamic range while iopamidol produced a more precise pH measurement. We then compared the performance of the two agents to measure in vivo extracellular pH (pHe) within xenograft tumor models of Raji lymphoma and MCF-7 breast cancer. Our results showed that the pHe values measured with each agent were not significantly different. Also, iopromide consistently measured a greater region of the tumor relative to iopamidol in both tumor models. Therefore, an iodinated contrast agent for acidoCEST MRI should be selected based on the measurement properties needed for a specific biomedical study and the pharmacokinetic properties of a specific tumor model.


Asunto(s)
Medios de Contraste/química , Yohexol/análogos & derivados , Yopamidol/química , Imagen por Resonancia Magnética/métodos , Microambiente Tumoral/fisiología , Acidosis/patología , Animales , Calibración , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Líquido Extracelular/química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Yohexol/química , Riñón/patología , Células MCF-7 , Ratones , Ratones SCID , Imagen Molecular , Trasplante de Neoplasias , Neoplasias/patología , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA