RESUMEN
Pennisetum giganteum is a promising non-food crop feedstock for biogas production due to its high productivity and bio-methane potential. However, the accumulation of volatile fatty acids (VFA) usually restricts the conversion efficiency of P. giganteum biomass (PGB) during anaerobic digestion (AD). Here, the role of KOH-activated biochar (KB) in improving the AD efficiency of PGB and the related mechanisms were investigated in detail. The results revealed that KB exhibited excellent electrical conductivity, electron transfer capacity and specific capacitance, which might be related to the decrease in the electron transfer resistance after adding KB to the AD process. In addition, the KB addition not only reinforced metabolisms of energy and VFAs but also promoted the conversion of VFAs to methane, leading to a 52% increase in the methane production rate. Bioinformatics analysis showed that Smithella and Methanosaeta were key players in the KB-mediated AD process of PGB. The stimulatory effect of methanogenesis probably resulted from the establishment of direct interspecies electron transfer (DIET) between VFA-oxidizing acetogens (e.g., Smithella) and Methanosaeta. These findings provided a key step to improve the PGB-based AD process.
Asunto(s)
Reactores Biológicos , Ácidos Grasos Volátiles , Anaerobiosis , Biomasa , Carbón Orgánico , MetanoRESUMEN
Using a batch thermophilic anaerobic system established with 60 mL serum bottles, the mechanism on how microbial enrichments obtained from magnetite-amended paddy soil via repeated batch cultivation affected methane production from acetate was investigated. Magnetite-amended enrichments (MAEs) can improve the methane production rate rather than the methane yield. Compared with magnetite-unamended enrichments, the methane production rate in MAE was improved by 50%, concomitant with the pronounced electrochemical response, high electron transfer capacity, and fast acetate degradation. The promoting effects might be ascribed to direct interspecies electron transfer facilitated by magnetite, where magnetite might function as electron conduits to link the acetate oxidizers (Anaerolineaceae and Peptococcaceae) with methanogens (Methanosarcinaceae). The findings demonstrated the potential application of MAE for boosting methanogenic performance during thermophilic anaerobic digestion.
Asunto(s)
Euryarchaeota , Óxido Ferrosoférrico , Anaerobiosis , Metano/metabolismo , Transporte de Electrón , Acetatos/metabolismo , Euryarchaeota/metabolismo , Reactores BiológicosRESUMEN
OBJECTIVES: To summarize the clinical data of 7 children with activated phosphoinositide 3-kinase delta syndrome (APDS) and enhance understanding of the disease. METHODS: A retrospective analysis was conducted on clinical data of 7 APDS children admitted to Hunan Provincial People's Hospital from January 2019 to August 2023. RESULTS: Among the 7 children (4 males, 3 females), the median age of onset was 30 months, and the median age at diagnosis was 101 months. Recurrent respiratory tract infections, hepatosplenomegaly, and multiple lymphadenopathy were observed in all 7 cases. Sepsis was observed in 5 cases, otitis media and multiple caries were observed in 3 cases, and diarrhea and joint pain were observed in 2 cases. Lymphoma and systemic lupus erythematosus were observed in 1 case each. Fiberoptic bronchoscopy was performed in 4 cases, revealing scattered nodular protrusions in the bronchial lumen. The most common respiratory pathogen was Streptococcus pneumoniae (4 cases). Six patients had a p.E1021K missense mutation, and one had a p.434-475del splice site mutation. CONCLUSIONS: p.E1021K is the most common mutation site in APDS children. Children who present with one or more of the following symptoms: recurrent respiratory tract infections, hepatosplenomegaly, multiple lymphadenopathy, otitis media, and caries, and exhibit scattered nodular protrusions on fiberoptic bronchoscopy, should be vigilant for APDS. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(5): 499-505.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Humanos , Femenino , Masculino , Preescolar , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios Retrospectivos , Infecciones del Sistema Respiratorio , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , LactanteRESUMEN
OBJECTIVES: To investigate the role of calprotectin S100 A8/A9 complex in evaluating the condition of children with severe Mycoplasma pneumoniae pneumonia (SMPP). METHODS: A prospective study was conducted among 136 children with Mycoplasma pneumoniae pneumonia (MPP) and 30 healthy controls. According to the severity of the condition, the children with MPP were divided into mild subgroup (40 children) and SMPP subgroup (96 children). The levels of S100 A8/A9 complex and related inflammatory factors were compared between the MPP group and the healthy control group, as well as between the two subgroups of MPP. The role of S100 A8/A9 in assessing the severity of MPP was explored. RESULTS: The MPP group had a significantly higher level of S100 A8/A9 than the healthy control group, with a significantly greater increase in the SMPP subgroup (P<0.05). The multivariate logistic regression analysis showed that the increases in serum C reactive protein (CRP) and S100A8/A9 were closely associated with SMPP (P<0.05). The receiver operating characteristic (ROC) curve analysis showed that the combined measurement of serum S100 A8/A9 and CRP had an area under the ROC curve of 0.904 in predicting SMPP, which was significantly higher than the AUC of S100 A8/A9 or CRP alone (P<0.05), with a specificity of 0.718 and a sensitivity of 0.952. CONCLUSIONS: S100 A8/A9 is closely associated with the severity of MPP, and the combination of S100 A8/A9 with CRP is more advantageous for assessing the severity of MPP in children.
Asunto(s)
Calgranulina A , Calgranulina B , Neumonía por Mycoplasma , Humanos , Neumonía por Mycoplasma/sangre , Neumonía por Mycoplasma/diagnóstico , Masculino , Femenino , Calgranulina A/sangre , Calgranulina B/sangre , Preescolar , Niño , Estudios Prospectivos , Modelos Logísticos , Índice de Severidad de la Enfermedad , Proteína C-Reactiva/análisis , Complejo de Antígeno L1 de Leucocito/sangre , Complejo de Antígeno L1 de Leucocito/análisis , LactanteRESUMEN
BACKGROUND: Z score utility is emphasized in classifying coronary artery lesions in Kawasaki disease patients. The present study is the largest such multicenter Chinese pediatric study about coronary artery diameter reference values and Z score regression equation to date. It is useful in Chinese pediatric echocardiography. METHODS: A multicenter cohort was assembled, which consisted of 852 healthy children between 1 month and 17 years of age, ten children were excluded because their ultrasound images were not clear, or lost in following up. Diameters of the right coronary artery, left coronary artery, and left anterior descending coronary artery were assessed using echocardiography. Data were body surface area (BSA)-corrected using BSA calculated via either the Stevenson BSA formula or the Haycock BSA formula. Coronary artery diameter reference values and Z score regression equations were established for use in the Chinese pediatric population. RESULTS: No difference was observed between coronary artery diameter data corrected using BSAste or BSAhay. Of the five assessed regression models, the exponential model exhibited the best fit and was therefore selected as the basis for derivation of the SZ method. When comparing Z scores, those produced by the SZ method conformed to the standard normal distribution, while those produced by the D method did not. In addition, there was a statistically significant difference between Z scores produced by the SZ and D methods (P < 0.05). CONCLUSIONS: Coronary artery diameter reference values for echocardiography were successfully established for use in the Chinese pediatric population, and a Z score regression equation more suitable for clinical use in this population was successfully developed.
Asunto(s)
Vasos Coronarios , Ecocardiografía , Niño , China , Estudios de Cohortes , Vasos Coronarios/diagnóstico por imagen , Humanos , Lactante , Estudios Prospectivos , Valores de ReferenciaRESUMEN
S100 calcium binding protein A9 (S100A9) is involved in a variety of biological processes such as inflammation and tumor cell migration and invasion regulation. The purpose of this study was to construct S100A9 gene-edited mice by using CRISPR/Cas9 technology, thereby providing an animal model for exploring the biological functions of this gene. According to the S100A9 gene sequence, the single-stranded small guide RNA (sgRNA) targeting exons 2 and 3 was transcribed in vitro, and a mixture of Cas9 mRNA and candidate sgRNA was injected into mouse fertilized eggs by microinjection. Early embryos were obtained and transferred to surrogate mice, and F0 mice were obtained and identified by PCR identification and gene sequencing. F0 mice were further mated with wild-type C57BL/6 mice to obtain F1 heterozygous mice, and then homozygous offspring were obtained through F1 mice self-crossing. Real-time PCR, Western blot and immunohistochemistry (IHC) were used to verify the expression and distribution of S100A9. In order to observe the pathological changes of mouse lung tissue using HE staining, an allergic asthma model was induced by ovalbumin from chicken egg white (OVA). The results showed that the 2 492 bp of exons 2, 3 of the S100A9 gene was successfully knocked out, and S100A9-/- mice with stable inheritance were obtained. Furthermore, it was found that S100A9 gene was highly expressed in the lung and spleen of wild-type mice. The expression of S100A9 mRNA and protein was not detected in the lung and spleen of S100A9-/- mice. However, compared with wild-type mice, the lungs of S100A9-/- mice showed a significantly worse inflammatory phenotype, and the proportion of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly increased in response to the treatment of OVA. These results suggest we have successfully constructed a new strain of S100A9-/- mice, and preliminarily confirmed that the lack of S100A9 function can aggravate airway inflammation in asthmatic mice, providing a new mouse model for further study of S100A9 gene function.
Asunto(s)
Marcación de Gen , Animales , Líquido del Lavado Bronquioalveolar , Sistemas CRISPR-Cas/genética , Calgranulina B , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Pulmón , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina , FenotipoRESUMEN
Intrinsic chemoresistance is the main reason for the failure of human pancreatic ductal adenocarcinoma (PDAC) therapy. To identify the candidate protein, we compared the protein expression profiling of PDAC cells and its distinct surviving cells following primary treatment with gemcitabine (GEM) and 5-fluorouracil (5-FU) by two-dimensional electrophoresis combined with liquid chromatography-mass spectrometry or mass spectrometry. A total of 20 differentially expressed proteins were identified, and annexin A1 (ANXA1) was analyzed for further validation. The functional validation showed that the downregulation of ANXA1 contributes to GEM and 5-FU resistance in PDAC cells through protein kinase C/c-Jun N-terminal kinase/P-glycoprotein signaling pathway. Our findings provide a platform for the further elucidation of the underlying mechanisms of PDAC intrinsic chemoresistance and demonstrated that ANXA1 may be a valid marker for anticancer drug development.
Asunto(s)
Anexina A1 , Biomarcadores de Tumor , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Fluorouracilo/uso terapéutico , Neoplasias Pancreáticas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Anexina A1/genética , Anexina A1/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Regulación hacia Abajo , Femenino , Fluorouracilo/farmacología , Humanos , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , GemcitabinaRESUMEN
The objective of this project was to find a bronchodilatory compound from herbs and clarify the mechanism. We found that the ethanol extract of Folium Sennae (EEFS) can relax airway smooth muscle (ASM). EEFS inhibited ASM contraction, induced by acetylcholine, in mouse tracheal rings and lung slices. High-performance liquid chromatography assay showed that EEFS contained emodin. Emodin had a similar reversal action. Acetylcholine-evoked contraction was also partially reduced by nifedipine (a selective inhibitor of L-type voltage-dependent Ca2+ channels, LVDCCs), YM-58483 (a selective inhibitor of store-operated Ca2+ entry, SOCE), as well as Y-27632 (an inhibitor of Rho-associated protein kinase). In addition, LVDCC- and SOCE-mediated currents and cytosolic Ca2+ elevations were inhibited by emodin. Emodin reversed acetylcholine-caused increases in phosphorylation of myosin phosphatase target subunit 1. Furthermore, emodin, in vivo, inhibited acetylcholine-induced respiratory system resistance in mice. These results indicate that EEFS-induced relaxation results from emodin inhibiting LVDCC, SOCE, and Ca2+ sensitization. These findings suggest that Folium Sennae and emodin may be new sources of bronchodilators.
Asunto(s)
Emodina/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Acetilcolina/efectos adversos , Acetilcolina/farmacología , Animales , Broncodilatadores/metabolismo , Broncodilatadores/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosfatasa de Miosina de Cadena Ligera/fisiología , Extractos Vegetales/farmacología , Senna/metabolismoRESUMEN
The purpose of this study was to screen a bronchodilator from old drugs and elucidate the underlying mechanism. Paracetamol (acetaminophen) is a widely used analgesic and antipyretic drug. It has been reported that it inhibits the generation of prostaglandin and histamine, which play roles in asthma. These findings led us to explore whether paracetamol could be a potential bronchodilator. Paracetamol inhibited high K+- and acetylcholine (ACH)-induced precontraction of mouse tracheal and bronchial smooth muscles. Moreover, the ACH-induced contraction was partially inhibited by nifedipine (selective blocker of LVDCCs), YM-58483 (selective inhibitor of store-operated Ca2+ entry (SOCE), canonical transient receptor potential 3 (TRPC3) and TRPC5 channels) and Y-27632 (selective blocker of ROCK, a linker of the Ca2+ sensitization pathway). In single airway smooth muscle cells, paracetamol blocked the currents sensitive to nifedipine and YM-58483, and inhibited intracellular Ca2+ increases. In addition, paracetamol inhibited ACH-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1, another linker of the Ca2+ sensitization pathway). Finally, in vivo paracetamol inhibited ACH-induced increases of mouse respirator system resistance. Collectively, we conclude that paracetamol inhibits ASM contraction through blocking LVDCCs, SOCE and/or TRPC3 and/or TRPC5 channels, and Ca2+ sensitization. These results suggest that paracetamol might be a new bronchodilator.
Asunto(s)
Acetaminofén/farmacología , Antipiréticos/farmacología , Asma/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Acetilcolina/química , Acetilcolina/farmacología , Animales , Asma/tratamiento farmacológico , Bronquios/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Nifedipino/farmacología , Potasio/metabolismoRESUMEN
Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.
Asunto(s)
Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Potenciales de Acción/genética , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células CHO , Línea Celular , Cricetulus , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Masculino , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: The main goal of successful gene selection for microarray data is to find compact and predictive gene subsets which could improve the accuracy. Though a large pool of available methods exists, selecting the optimal gene subset for accurate classification is still very challenging for the diagnosis and treatment of cancer. RESULTS: To obtain the most predictive genes subsets without filtering out critical genes, a gene selection method based on least absolute shrinkage and selection operator (LASSO) and an improved binary particle swarm optimization (BPSO) is proposed in this paper. To avoid overfitting of LASSO, the initial gene pool is divided into clusters based on their structure. LASSO is then employed to select high predictive genes and further calculate the contribution value which indicates the genes' sensitivity to samples' classes. With the second-level gene pool established by double filter strategy, the BPSO encoding the contribution information obtained from LASSO is improved to perform gene selection. Moreover, from the perspective of the bit change probability, a new mapping function is defined to guide the updating of the particle to select the more predictive genes in the improved BPSO. CONCLUSIONS: With the compact gene pool obtained by double filter strategies, the improved BPSO could select the optimal gene subsets with high probability. The experimental results on several public microarray data with extreme learning machine verify the effectiveness of the proposed method compared to the relevant methods.
Asunto(s)
Algoritmos , Genes Relacionados con las Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Aprendizaje Automático , Neoplasias/genética , ProbabilidadRESUMEN
Lysine-specific demethylase 2A (KDM2A, also known as JHDM1A or FBXL11) plays an important role in regulating cell proliferation. However, the mechanisms on KDM2A controlling cell proliferation are varied among cell types, even controversial conclusions have been drawn. In order to elucidate the functions and underlying mechanisms for KDM2A controlling cell proliferation and apoptosis, we screened a KDM2A knockout HEK293T cell lines by CRISPR-Cas9 to illustrate the effects of KDM2A on both biological process. The results indicate that knocking down expression of KDM2A can significantly weaken HEK293T cell proliferation. The cell cycle analysis via flow cytometry demonstrate that knockdown expression of KDM2A will lead more cells arrested at G2/M phase. Through the RNA-seq analysis of the differential expressed genes between KDM2A knockdown HEK293T cells and wild type, we screened out that TGF-ß pathway was significantly downregulated in KDM2A knockdown cells, which indicates that TGF-ß signaling pathway might be the downstream target of KDM2A to regulate cell proliferation. When the KDM2A knockdown HEK293T cells were transient-transfected with KDM2A overexpression plasmid or treated by TGF-ß agonist hydrochloride, the cell proliferation levels can be partial or completely rescued. However, the TGF-ß inhibitor LY2109761 can significantly inhibit the KDM2A WT cells proliferation, but not the KDM2A knockdown HEK293T cells. Taken together, these findings suggested that KDM2A might be a key regulator of cell proliferation and cell cycle via impacting TGF-ß signaling pathway.
Asunto(s)
Proliferación Celular , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Sistemas CRISPR-Cas , Proteínas F-Box/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Pirazoles/farmacología , Pirroles/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genéticaRESUMEN
Methylation of the fifth carbon atom in cytosine is an epigenetic modification of deoxyribonucleic acid that plays important roles in numerous cellular processes and disease pathogenesis. Three additional states of cytosine, that is, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have been identified and associated with the diagnosis and/or prognosis of diseases. However, accurate measurement of those intermediates is a challenge since their global levels are relatively low. A number of innovative methods have been developed to detect and quantify these compounds in biological samples, such as blood, tissue and urine, etc. This review focuses on recent advancement in detection and quantification of four cytosine modifications, based on which, the development, diagnosis, and prognosis of diseases could be monitored through non-invasive procedures.
Asunto(s)
5-Metilcitosina/análisis , 5-Metilcitosina/análogos & derivados , Animales , Cromatografía Liquida , Humanos , Espectrometría de Masas en TándemRESUMEN
Azithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans. Two other macrolide antibiotics, roxithromycin and Klaricid, displayed a decreased inhibitory activity, and the aminoglycoside antibiotics penicillin and streptomycin did not have an inhibitory effect. Precontractions were partially inhibited by nifedipine (selective inhibitor of L-type voltage-dependent Ca2+ channels (LVDCCs)), Pyr3 (selective inhibitor of TRPC3 and/or STIM/Orai channels, which are nonselective cation channels (NSCCs)), and Y-27632 (selective inhibitor of Rho-associated kinase (ROCK)). Moreover, LVDCC- and NSCC-mediated currents were inhibited by AZM, and the latter were suppressed by the muscarinic (M) 2 receptor inhibitor methoctramine. AZM inhibited LVDCC Ca2+ permeant ion channels, M2 receptors, and TRPC3 and/or STIM/Orai, which decreased cytosolic Ca2+ concentrations and led to muscle relaxation. This relaxation was also enhanced by the inhibition of Ca2+ sensitization. Therefore, AZM has potential as a novel and potent bronchodilator. The findings of this study improve the understanding of the effects of AZM on asthma and COPD.
RESUMEN
BACKGROUND: Medical thoracoscopy is considered an overall safe procedure, whereas numbers of studies focus on complications of diagnostic thoracoscopy and talc poudrage pleurodesis. We conduct this study to evaluate the safety of medical thoracoscopy in the management of pleural diseases and to compare complications in different therapeutic thoracoscopic procedures. METHODS: A retrospective study was performed in 1926 patients, 662 of whom underwent medical thoracoscopy for diagnosis and 1264 of whom for therapeutic interventions of pleural diseases. Data on complications were obtained from the patients, notes on computer system, laboratory and radiographic findings. Chi-square test was performed to compare categorical variables and Fisher's exact test was used for small samples. RESULTS: The mean age was 51 ± 8.4 (range 21-86) years and 1117 (58%) were males. Diagnostic procedure was taken in 662 (34.4%) patients, whereas therapeutic procedure was taken in 1264 (65.6%) patients. Malignant histology was reported in 860 (44.6%) and 986 (51.2%) revealed benign pleural diseases. Eighty patients (4.2%) were not definitely diagnosed and they were considered as unidentified pleural effusion. One patient died during the creation of artificial pneumothorax, and the causes of death were supposed as air embolism or an inhibition of phrenic motoneurons and circulatory system. Complication of lung laceration was found in six patients (0.3%) and reexpansion pulmonary edema was observed in two patients (0.1%). Higher incidence of prolonged air leak was observed in bulla electrocoagulation group, in comparison with pleurodesis group. Moreover, pain and fever were the most frequently complications in pleurodesis group and cutaneous infection in entry site was the most frequently reported complication in pleural decortication of empyema group. CONCLUSIONS: Medical thoracoscopy is generally a safe and effective method, not only in the diagnosis of undiagnosed pleural effusions, but also in the management of pleural diseases. Mastering medical thoracoscopy well, improving patient management after the procedure and attempts to reduce the occurrence of post-procedural complications are the targets that physicians are supposed to achieve in the future.
Asunto(s)
Derrame Pleural Maligno/diagnóstico , Derrame Pleural/diagnóstico , Derrame Pleural/terapia , Pleurodesia , Toracoscopía , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Distribución de Chi-Cuadrado , Exudados y Transudados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Pleura/patología , Pleurodesia/efectos adversos , Recurrencia , Estudios Retrospectivos , Talco/administración & dosificación , Toracoscopía/efectos adversos , Tuberculosis/complicaciones , Tuberculosis/diagnóstico , Adulto JovenRESUMEN
The aim of this study was to investigate the inhibitory effect and the underlying mechanism of ethacrynic acid (EA) on the contraction in mice. BL-420S force measuring system was used to measure the tension of mouse tracheal rings. The whole cell patch clamp technique was utilized to record the channel currents of airway smooth muscle (ASM) cells. The calcium imaging system was used to determine the intracellular Ca2+ concentration ([Ca2+]i) in ASM cells. The results showed that EA significantly inhibited the high K+ (80 mmol/L) and acetylcholine (ACh, 100 µmol/L)-induced contraction of mouse tracheal rings in a dose-dependent manner. The maximal relaxation percentages were (97.02 ± 1.56)% and (85.21 ± 0.03)%, and the median effective concentrations were (40.28 ± 2.20) µmol/L and (56.22 ± 7.62) µmol/L, respectively. EA decreased the K+ and ACh-induced elevation of [Ca2+]i from 0.40 ± 0.04 to 0.16 ± 0.01 and from 0.50 ± 0.01 to 0.39 ± 0.01, respectively. In addition, EA inhibited L-type voltage-dependent calcium channel (LVDCC) and store-operated calcium channel (SOCC) currents in ASM cells, and Ca2+ influx. Moreover, EA decreased the resistance of the respiratory system (Rrs) in vivo in mice. These results indicated that EA inhibits LVDCC and SOCC, which results in termination of Ca2+ influx and decreases of [Ca2+]i, leading to relaxation of ASM. Taken together, EA might be a potential bronchodilator.
Asunto(s)
Ácido Etacrínico , Contracción Muscular , Músculo Liso , Sistema Respiratorio , Animales , Calcio/metabolismo , Canales de Calcio Tipo L , Inhibidores Enzimáticos/farmacología , Ácido Etacrínico/farmacología , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Sistema Respiratorio/citología , Sistema Respiratorio/efectos de los fármacosRESUMEN
BACKGROUND/AIMS: Tetraethylammonium chloride (TEA) induces oscillatory contractions in mouse airway smooth muscle (ASM); however, the generation and maintenance of oscillatory contractions and their role in ASM are unclear. METHODS: In this study, oscillations of ASM contraction and intracellular Ca2+ were measured using force measuring and Ca2+ imaging technique, respectively. TEA, nifedipine, niflumic acid, acetylcholine chloride, lithium chloride, KB-R7943, ouabain, 2-Aminoethoxydiphenyl borate, thapsigargin, tetrodotoxin, and ryanodine were used to assess the mechanism of oscillatory contractions. RESULTS: TEA induced depolarization, resulting in activation of L-type voltage-dependent Ca2+ channels (LVDCCs) and voltage-dependent Na+ (VNa) channels. The former mediated Ca2+ influx to trigger a contraction and the latter mediated Na+ entry to enhance the contraction via activating LVDCCs. Meanwhile, increased Ca2+-activated Cl- channels, inducing depolarization that resulted in contraction through LVDCCs. In addition, the contraction was enhanced by intracellular Ca2+ release from Ca2+ stores mediated by inositol (1,4,5)-trisphosphate receptors (IP3Rs). These pathways together produce the contractile phase of the oscillatory contractions. Furthermore, the increased Ca2+ activated the Na+-Ca2+ exchanger (NCX), which transferred Ca2+ out of and Na+ into the cells. The former induced relaxation and the latter activated Na+/K+-ATPase that induced hypopolarization to inactivate LVDCCs causing further relaxation. This can also explain the relaxant phase of the oscillatory contractions. Moreover, the depolarization induced by VNa channels and NCX might be greater than the hypopolarization caused by Na+/K+-ATPase alone, inducing LVDCC activation and resulting in further contraction. CONCLUSIONS: These data indicate that the TEA-induced oscillatory contractions were cooperatively produced by LVDCCs, VNa channels, Ca2+-activated Cl- channels, NCX, Na+/K+ ATPase, IP3Rs-mediated Ca2+ release, and extracellular Ca2+.
Asunto(s)
Relojes Biológicos/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Tetraetilamonio/farmacología , Tráquea/metabolismo , Animales , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos BALB CRESUMEN
This study aimed to elucidate the mechanisms of nuciferine (a main aporphine alkaloid of lotus leaf extract), which can induce relaxation in contracted tracheal rings. Under Ca2+-free and 2 mM Ca2+ conditions, we found that nuciferine had no effect on the resting muscle tone of tracheal rings. In contrast, nuciferine relaxed high K+-contracted mouse tracheal rings in a dose-dependent manner and inhibited both Ca2+ influx and voltage-dependent L-type Ca2+ channel currents induced by high K+. Similarly, nuciferine also inhibited acetylcholine-induced contractions in mouse tracheal rings in a dose-dependent manner. Meanwhile, both acetylcholine-induced intracellular Ca2+ influx and whole-cell currents of nonselective cation channels were blocked by nuciferine. Together, the results indicate that nuciferine-induced relaxation in tracheal rings mainly occurred due to the inhibition of extracellular Ca2+ influx through the blockade of voltage-dependent L-type Ca2+ channels and/or nonselective cation channels. These results suggest that nuciferine has a therapeutic effect on respiratory diseases associated with the aberrant contraction of airway smooth muscles and/or bronchospasm.
Asunto(s)
Aporfinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Nelumbo/química , Parasimpatolíticos/farmacología , Tráquea/efectos de los fármacos , Acetilcolina/metabolismo , Animales , Aporfinas/química , Aporfinas/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Músculo Liso/metabolismoRESUMEN
In today's world, diabetes mellitus (DM) is on the rise, especially type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. T2DM has high morbidity, and therapies with natural products have attracted much attention in the recent past. In this paper, we aimed to study the hypoglycemic effect and the mechanism of an ethanolic extract of Folium Sennae (FSE) on L6 cells. The glucose uptake of L6 cells was investigated using a glucose assay kit. We studied glucose transporter 4 (GLUT4) expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), and protein kinase C (PKC) phosphorylation levels using western blot analysis. GLUT4 trafficking and intracellular Ca2+ levels were monitored by laser confocal microscopy in L6 cells stably expressing IRAP-mOrange. GLUT4 fusion with plasma membrane (PM) was observed by myc-GLUT4-mOrange. FSE stimulated glucose uptake; GLUT4 expression and translocation; PM fusion; intracellular Ca2+ elevation; and the phosphorylation of AMPK, Akt, and PKC in L6 cells. GLUT4 translocation was weakened by the AMPK inhibitor compound C, PI3K inhibitor Wortmannin, PKC inhibitor Gö6983, G protein inhibitor PTX/Gallein, and PLC inhibitor U73122. Similarly, in addition to PTX/Gallein and U73122, the IP3R inhibitor 2-APB and a 0 mM Ca2+-EGTA solution partially inhibited the elevation of intracellular Ca2+ levels. BAPTA-AM had a significant inhibitory effect on FSE-mediated GLUT4 activities. In summary, FSE regulates GLUT4 expression and translocation by activating the AMPK, PI3K/Akt, and G proteinâ»PLCâ»PKC pathways. FSE causes increasing Ca2+ concentration to complete the fusion of GLUT4 vesicles with PM, allowing glucose uptake. Therefore, FSE may be a potential drug for improving T2DM.
Asunto(s)
Calcio/metabolismo , Cassia/química , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Extractos Vegetales/farmacología , Animales , Transporte Biológico , Biomarcadores , Línea Celular , Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND/AIMS: Recently, some small-molecule compounds that were designed for cancer therapy have acquired new roles in the treatment of pulmonary diseases. However, drug screening aimed at abnormal muscle contraction is still limited. TSU-68 is a potent, orally administered, small-molecule agent that can reduce the vascular endothelial growth factor (VEGF)-induced Ca2+ increase in endothelial cells. We questioned whether TSU-68 could also affect calcium influx and relax airway smooth muscle (ASM) cells. The current study aimed to investigate these effects and to explore the underlying mechanisms. METHODS: The effects of TSU-68 on ASM cells were studied in mice using a series of biophysiological techniques, including force measurement and patch-clamp experiments. RESULTS: TSU-68 inhibited high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a concentration-dependent manner. Further research demonstrated that the TSU-68-induced ASM relaxation was mediated by calcium, which was decreased by blocking voltage-dependent Ca2+ channels (VDCCs) and non-selective cation channels (NSCCs). CONCLUSION: Our data indicated that TSU-68 relaxes tense ASM by reducing the intracellular Ca2+ concentration through blocking VDCCs and NSCCs, which suggested that this small molecule might be useful in the treatment of abnormal smooth muscle.