Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 57: 102739, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341009

RESUMEN

Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.


Asunto(s)
Citocinas , Zinc , Animales , Conejos , Zinc/farmacología , Factor A de Crecimiento Endotelial Vascular , Preparaciones de Acción Retardada/farmacología , Stents
2.
Artículo en Inglés | MEDLINE | ID: mdl-38639629

RESUMEN

Objective: To evaluate the effect of traditional Chinese medicine (TCM) rehabilitation on the postoperative function of patients with distal radius fractures by Meta-analysis. Methods: PubMed, Embase, CNKI, Wanfang, and other databases were searched for retrospective controlled trials and prospective randomized controlled trials on the effect of traditional Chinese medicine rehabilitation on the function of patients with distal radius fractures after surgery from the establishment of the database to May 2023. Revman version 5.3 software was used to analyze the extracted and screened index data. Results: Eight studies involving 455 patients were included. Meta-analysis results showed Overall analysis showed that there was a significant difference in wrist function between the TCM rehabilitation group and the control group (MD = -12.16, 95%CI:-17.21 to -7.11, P < .00001), low heterogeneity (I2=40%, P = .17), the difference in dorsiflexion function between the TCM rehabilitation group and the control group was statistically significant (MD = -1.16, 95%CI:-2.24 to -0.08, P = .04), with high heterogeneity (I2=79%, P = .003), that there was a significant difference in grip strength between the TCM rehabilitation group and the control group at 6 weeks (MD= 0.48, 95%CI: 0.24 to 0.71, P < .0001) with low heterogeneity (I2=45%, P = .12), there was no significant difference between the TCM rehabilitation group and the control group (OR= -0.00, 95%CI: -0.08 to 0.08, P = .99), and there was no heterogeneity (I2=0%, P = .66). Conclusion: Traditional Chinese medicine rehabilitation treatment of distal radius fractures can increase the range of motion of wrist joints, reduce pain, shorten the rehabilitation time of patients, improve the quality of life, and is conducive to the standardized treatment of patients.

3.
Small ; 19(19): e2207825, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36772903

RESUMEN

Nowadays, Fenton chemistry-based chemodynamic therapy (CDT) is an emerging approach to killing tumor cells by converting endogenous H2 O2 into cytotoxic hydroxyl radicals (·OH). However, the elimination of ·OH by intracellular overexpressed glutathione (GSH) results in unsatisfactory antitumor efficiency. In addition, the single mode of consuming GSH and undesirable drug loading efficiency cannot guarantee the efficient cancer cells killing effect. Herein, a simple one-step strategy for the construction of Fe3+ -naphthazarin metal-phenolic networks (FNP MPNs) with ultrahigh loading capacity, followed by the modification of NH2 -PEG-NH2 , is developed. The carrier-free FNP MPNs can be triggered by acid and GSH, and rapidly release naphthazarin and Fe3+ , which is further reduced to Fe2+ that exerts Fenton catalytic activity to produce abundant ·OH. Meanwhile, the Michael addition between naphthazarin and GSH can lead to GSH depletion and thus achieve tumor microenvironment (TME)-triggered enhanced CDT, followed by activating ferroptosis and apoptosis. In addition, the reduced Fe2+ as a T1 -weighted contrast agent endows the FNP MPNs with magnetic resonance imaging (MRI) functionality. Overall, this work is the debut of naphthazarin as ligands to fabricate functional MPNs for effectively depleting GSH, disrupting intracellular redox homeostasis, and enhancing CDT effects, which opens new perspectives on multifunctional MPNs for tumor synergistic therapy.


Asunto(s)
Ferroptosis , Naftoquinonas , Neoplasias , Compuestos Férricos , Apoptosis , Glutatión , Metales , Fenoles , Neoplasias/tratamiento farmacológico
4.
World J Microbiol Biotechnol ; 39(3): 87, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725731

RESUMEN

Low phosphorus utilization and phosphorus fertilizer pollution are serious issues primarily affecting soil health. To investigate the effects of biochar on the growth, phosphorus solubilization, and metabolites of phosphorus-solubilizing bacteria (PSB), rice husk biochar (RH) and rice straw biochar (RS) were incubated with Bacillus megatherium (BM1) and Bacillus mucilaginosus (BM2), respectively. The highest phosphorus solubilization was observed in BM2 following the addition of RS. The dissolved amount of phosphorus was 244.99 mg/L, which was 43.86% higher than that of the control group. Hence, biochar can improve the phosphorus solubilization capacity of PSB by affecting the organic acid and polysaccharide contents, and phosphatase activity secreted by the PSB, as the porous structure and surface characteristics of biochar ensured the adsorption of PSB. This study can help improve the functional activity of PSB and provide basis for improving the utilization of soil phosphorus, which in turn, aid in the development of biochar-based microbial fertilizers.


Asunto(s)
Bacillus megaterium , Fosfatos , Fosfatos/metabolismo , Fósforo/metabolismo , Bacillus megaterium/metabolismo , Suelo/química , Fertilizantes/análisis
5.
Angew Chem Int Ed Engl ; 62(18): e202301831, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36879553

RESUMEN

The special structural morphology of hollow covalent organic frameworks (HCOFs) has an important influence on their applications. However, the rapid and precise control of morphology for HCOFs still remains largely challenging. Herein, we present a facile and universal two-step strategy based on solvent evaporation and oxidation of imine bond for the controllable synthesis of HCOFs. The strategy enables to prepare HCOFs in a greatly shortened reaction time and seven kinds of HCOFs are fabricated by the oxidation of imine bond via hydroxyl radicals (⋅OH) generated from Fenton reaction. Importantly, a fascinating library of HCOFs with diverse nanostructures, including bowl-like, yolk-shell, capsule-like and flower-like morphologies, has been ingeniously constructed. Owing to the large cavities, the obtained HCOFs are ideal candidates for drug delivery, which are employed to load five small molecule drugs, achieving the enhanced sonodynamic cancer therapy in vivo.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Citoplasma , Sistemas de Liberación de Medicamentos , Iminas
6.
Mol Pharm ; 19(12): 4685-4695, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36278815

RESUMEN

Surface modification manipulates the application performance of materials, and thrombosis caused by material contact is a key risk factor of biomaterials failure in blood-contacting/implanting devices. Therefore, building a safe and effective hemocompatibility platform is still urgent. Owing to the unique properties of polyamidoamine (PAMAM) dendrimers, in this study, modified surfaces with varying dendrimer densities were interacted with elements maintaining blood homeostasis. These included the plasma proteins bovine serum albumin and fibrinogen, cells in blood (platelets and erythrocyte), as well as endothelial cells (ECs), and the objective was to evaluate the blood compatibility of the chosen materials. Whole blood test and dynamic blood circulation experiment by the arteriovenous shunt mode of rabbit were also conducted, based on the complexity and fluidity of blood. The PAMAM-modified substrates, particularly that with a high density of PAMAM (N1.0), adsorbed proteins with lessened fibrinogen adsorption, reduced platelet activation and aggregation, and suppressed clotting in whole blood and dynamic blood testing. Furthermore, the designed PAMAM dendrimer densities were safe and showed negligible erythrocyte lysis. Concurrently, PAMAM modification could maintain EC growth and did not trigger the release of procoagulant factors. These results suggest that the PAMAM-modified materials are compatible for maintaining blood homeostasis. Thus, PAMAM dendrimers can work as excellent surface modifiers for constructing a hemocompatibility platform and even a primer layer for desired functional design, promoting the service performance of blood-contacting devices.


Asunto(s)
Dendrímeros , Animales , Conejos , Dendrímeros/química , Células Endoteliales/metabolismo , Diálisis Renal , Fibrinógeno
7.
BMC Cardiovasc Disord ; 22(1): 126, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331149

RESUMEN

BACKGROUND: Myocardial infarction (MI) remains the leading cause of death and disability among cardiovascular diseases worldwide. Studies show that elevated low-density lipid protein cholesterol (LDL-C) levels confer the highest absolute risk of MI, and Apolipoprotein E (ApoE) is implicated in regulating levels of triglycerides (TGs), cholesterol, and LDL-C. Our study aimed to evaluate the association between APOE polymorphism and MI, and to provide evidence for the etiology of MI. METHODS: Case-control studies on the association between APOE polymorphisms and the risk of myocardial infarction were included by searching PubMed, Web of Science, and CNKI, and this meta-analysis was written in accordance with PRISMA guideline statement. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using either random-effects or fixed-effects models by R software. RESULTS: A total of 33 eligible articles involving 13,706 cases and 14,817 controls were finally selected. The pooled analysis based on the total eligible articles showed that the risk of MI was associated with ApoE epsilon 2 and epsilon 4 alleles. The results showed that patients with MI had a low frequency of the ε2 allele (OR 0.74, 95% CI 0.64-0.86) and a high frequency of the ε4 allele (OR 1.24, 95% CI 1.09-1.42). CONCLUSIONS: APOE ε2-involved genotypes may be protective factors for MI; in contrast, ε4-involved genotypes (ε4/ε3 vs. ε3/ε3, and ε4/ε4 vs. ε3/ε3) may be risk factors for MI.


Asunto(s)
Apolipoproteínas E/genética , Infarto del Miocardio , Alelos , Apolipoproteína E2/genética , LDL-Colesterol , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Polimorfismo Genético
8.
J Nanobiotechnology ; 20(1): 188, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413984

RESUMEN

BACKGROUND: Calcium ions (Ca2+) participates in various intracellular signal cascades and especially plays a key role in pathways relevant to cancer cells. Mitochondrial metabolism stimulated by calcium overload can trigger the opening of the mitochondrial permeability transition pore (MPTP), which leads to cancer cell death. METHODS: Herein, a mitochondrial pathway for tumour growth inhibition was built via the double-activation of MPTP channel. Fe2+ doped covalent organic frameworks (COF) was synthesised and applied as template to grow CaCO3 shell. Then O2 was storaged into Fe2+ doped COF, forming O2-FeCOF@CaCO3 nanocomposite. After modification with folic acid (FA), O2-FeCOF@CaCO3@FA (OFCCF) can target breast cancer cells and realize PDT/Ca2+ overload synergistic treatment. RESULTS: COF can induce the production of 1O2 under 650 nm irradiation for photodynamic therapy (PDT). Low pH and hypoxia in tumour microenvironment (TME) can activate the nanocomposite to release oxygen and Ca2+. The released O2 can alleviate hypoxia in TME, thus enhancing the efficiency of COF-mediated PDT. Abundant Ca2+ were released and accumulated in cancer cells, resulting in Ca2+ overload. Notably, the reactive oxygen species (ROS) and Ca2+ overload ensure the sustained opening of MPTP, which leads to the change of mitochondria transmembrane potential, the release of cytochrome c (Cyt c) and the activation of caspases 3 for cancer cell apoptosis. CONCLUSION: This multifunctional nanosystem with TME responded abilities provided a novel strategy for innovative clinical cancer therapy.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Neoplasias , Humanos , Calcio/metabolismo , Hipoxia/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163172

RESUMEN

The process of full-thickness skin regeneration is complex and has many parameters involved, which makes it difficult to use a single dressing to meet the various requirements of the complete regeneration at the same time. Therefore, developing hydrogel dressings with multifunction, including tunable rheological properties and aperture, hemostatic, antibacterial and super cytocompatibility, is a desirable candidate in wound healing. In this study, a series of complex hydrogels were developed via the hydrogen bond and covalent bond between chitosan (CS) and alginate (SA). These hydrogels exhibited suitable pore size and tunable rheological properties for cell adhesion. Chitosan endowed hemostatic, antibacterial properties and great cytocompatibility and thus solved two primary problems in the early stage of the wound healing process. Moreover, the sustained cytocompatibility of the hydrogels was further investigated after adding FGF and VE-cadherin via the co-culture of L929 and EC for 12 days. The confocal 3D fluorescent images showed that the cells were spherical and tended to form multicellular spheroids, which distributed in about 40-60 µm thick hydrogels. Furthermore, the hydrogel dressings significantly accelerate defected skin turn to normal skin with proper epithelial thickness and new blood vessels and hair follicles through the histological analysis of in vivo wound healing. The findings mentioned above demonstrated that the CS/SA hydrogels with growth factors have great potential as multifunctional hydrogel dressings for full-thickness skin regeneration incorporated with hemostatic, antibacterial, sustained cytocompatibility for 3D cell culture and normal skin repairing.


Asunto(s)
Antígenos CD/farmacología , Cadherinas/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Piel/metabolismo , Alginatos/química , Animales , Antibacterianos/química , Vendas Hidrocoloidales , Línea Celular , China , Quitosano/química , Hemostáticos/química , Hidrogeles/síntesis química , Hidrogeles/química , Masculino , Conejos , Ratas , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Cicatrización de Heridas/fisiología
10.
Small ; 17(6): e2005728, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33470521

RESUMEN

In order to achieve better antitumor therapeutic efficacy and inhibit tumor metastasis, a multifunctional nanovaccine based on L-arginine (LA)-loaded black mesoporous titania (BMT) is fabricated. In this system, LA is utilized as the exogenous NO supplementation for gas therapy, and BMT is served as acoustic sensitizer for sonodynamic therapy. The ultrasound (US) as the exogenous stimulus can simultaneously trigger BMT and LA to produce singlet oxygen (1 O2 ) and NO gas at tumor sites, respectively. Interestingly, 1 O2 from US-excited BMT can promote the oxidation of LA to produce more NO. The high concentration of 1 O2 and NO in cancer cell can cause intracellular strong oxidative stress level and DNA double-strand breaks to induce cancer cell apoptosis ultimately. The US-triggered BMT@LA "nanovaccine" combining with immune checkpoint inhibitor PD-L1 antibody (αPD-L1) can induce strong antitumor immune response thus effectively killing primary tumors and further inhibiting metastatic tumors. Hence, BMT@LA-based "nanovaccine" combining with αPD-L1 checkpoint blockade treatment can realize synergetic sonodynamic/gas/immunotherapy with enhanced antitumor therapeutic effects.


Asunto(s)
Neoplasias , Arginina , Humanos , Inmunoterapia , Neoplasias/terapia , Titanio
11.
Bioconjug Chem ; 32(4): 661-666, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33710853

RESUMEN

Sonodynamic therapy (SDT) has attracted wide attention for its high tissue-penetration depth capacity. However, developing new kinds of sonosensitizers that are capable of generating large amounts of reactive oxygen species (ROS) still remains a challenge. Herein, covalent organic framework-titanium oxide nanoparticles (COF-TiO2 NPs) were successfully synthesized by using COF as a template. Under ultrasound (US) irradiation, large quantities of ROS can be generated, and compared with pure TiO2 NPs, the SDT performance of COF-TiO2 nanoparticles was significantly improved due to the narrower band gap. Both in vitro and in vivo experiments demonstrated the great tumor inhibitory effect via COF-TiO2-mediated SDT. This work broadens the biomedical applications of COF-based composites.


Asunto(s)
Estructuras Metalorgánicas/química , Nanocompuestos/química , Titanio/química , Terapia por Ultrasonido , Línea Celular Tumoral , Humanos
12.
Cancer Cell Int ; 21(1): 267, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001106

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is more commonly associated with young patients, featuring high histological grade, visceral metastasis, and distant recurrence. Follistatin (FST) is a secreted extracellular regulatory protein that antagonizes TGF-ß superfamily such as activin and TGF-ß related superfamily such as bone morphogenetic protein (BMP). The implication of FST in the proliferation, angiogenesis, and metastasis of solid tumors documents good or poor outcome of patients with BC. However, the role of FST in TNBC remains unclear. METHODS: Data of 935 patients with breast cancer (BC) were extracted from TCGA. Case-control study, Kaplan-Meier, uni-multivariate COX, and ROC curve were utilized to investigate the relationship between FST expression and the clinical characteristics and prognosis of BC. Functional studies were used to analyze the effect of FST expression on proliferation, apoptosis, migration, and invasion of TNBC cell lines. Bioinformatic methods such as volcanoplot, GO annd KEGG enrichment, and protein-protein interactions (PPI) analyses were conducted to further confirm the different roles of FST in the apoptotic pathways among mesenchymal and mesenchymal stem-like cells of TNBC. RESULTS: Data from TCGA showed that low FST expression correlated with poor prognosis (for univariate analysis, HR = 0.47, 95% CI: 0.27-0.82, p = 0.008; for multivariate analysis, HR = 0.40, 95% CI: 0.21-0.75, p = 0.004). Low FST expression provided high predicted value of poor prognosis in TNBC amongst BCs. FST knockdown promoted the proliferation, migration and invasion of BT549 and HS578T cell lines. FST inhibited the apoptosis of mesenchymal cells by targeting BMP7. CONCLUSIONS: Low FST expression is associated with poor prognosis of patients with TNBC. FST expressions exhibit the anisotropic roles of apoptosis between mesenchymal and mesenchymal stem-like cells but promote the proliferation, migration, invasion in both of two subtypes of TNBC in vitro. FST may be a subtype-heterogeneous biomarker for monitoring the progress of TNBC.

13.
BMC Cardiovasc Disord ; 21(1): 385, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372765

RESUMEN

BACKGROUND: Essential hypertension is a complex disease determined by the interaction of genetic and environmental factors, eNOS is considered to be one of the susceptible genes for hypertension. Our study aimed to evaluate the association between eNOS rs1799983 polymorphism and hypertension, and to provide evidence for the etiology of hypertension. METHODS: Case-control studies of eNOS rs1799983 polymorphism and hypertension were included by searching PubMed, Embase, Web of Science, Medline, Scopus, WanFang datebase, Vip datebase, and CNKI database according to PRISMA guideline. Eligible data were extracted and pooled, and were analyzed using R software based on five different genetic models. RESULTS: A total of 60 eligible articles involving 14,185 cases and 13,407 controls were finally selected. We found significant association between eNOS rs1799983 polymorphism and hypertension under any genetic model (T vs G: OR = 1.44, 95% CI 1.26-1.63; GT vs GG: OR 1.34, 95% CI 1.18-1.52; TT vs GG: OR 1.80, 95% CI 1.41-2.31; GT + TT vs GG: OR 1.42, 95% CI 1.25-1.63; TT vs GG + GT: OR 1.68, 95% CI 1.35-2.08; GT vs GG + TT: OR 1.24, 95% CI 1.11-1.40). CONCLUSIONS: We found that eNOS rs1799983 polymorphism is associated with the increased risk of hypertension under any genetic model. Moreover, investigations of gene-gene and gene-environment interactions are needed to give more insight into the association between eNOS rs1799983 polymorphism and hypertension.


Asunto(s)
Hipertensión Esencial/genética , Óxido Nítrico Sintasa de Tipo III/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Intervalos de Confianza , Análisis de Datos , Hipertensión Esencial/etnología , Interacción Gen-Ambiente , Humanos , Modelos Genéticos , Oportunidad Relativa , Sesgo de Publicación
14.
Prep Biochem Biotechnol ; 51(8): 792-802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33356900

RESUMEN

This study investigated the effect of corn straw biochar on the decomposition, nutrient transformation, and bacterial community characteristics in the corn straw decomposition process. A 90-day microcosm incubation experiment was performed to assess the effects of corn straw biochar (500 °C, 1 h) on the corn straw decomposition process and the resulting product. Four biochar amendment rates (0%, 5, 10, and 15%, as mass fractions of biochar) and three different addition times (1st day, 30th day, and 60th day) were set in total. The results showed that corn straw biochar significantly increased the pH of the corn straw decomposition process by 0.71-0.73 and increased the electrical conductivity value by 0.64-1.07 µS/cm over that of the controls. In addition, biochar was shown to increase the temperature rise rate and temperature peak of the straw maturation system, and advance the process of straw maturation by 10 days. Thus, treatment with corn straw biochar could accelerate the corn straw decomposition process and change the conditions for microorganisms involved in the process. Furthermore, biochar additions significantly decreased the organic matter content by 9.67% under B3 and T1 treatment, and enhanced the N, P2O5, and K2O contents of the straw decomposition product by 0.36, 0.19, and 0.88% under B3 and T1 treatment. Biochar additions could increase the abundance of several effective bacteria closely related to the N, P2O5, and K2O contents of the straw maturation product. The growth of these bacteria was likely to be affected by the increase in pH with biochar addition, which enabled the improvement of the nutrient mineralization process.


Asunto(s)
Bacterias/crecimiento & desarrollo , Carbón Orgánico/química , Consorcios Microbianos , Zea mays/química
15.
Bioconjug Chem ; 31(6): 1661-1670, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32393025

RESUMEN

Due to the specific tumor microenvironment (TME) and immunosuppressive state of cancer cells, conventional antitumor therapies face severe challenges, such as high rates of recurrence and metastasis. Herein, Cu-PPT nanoparticles were synthesized based on copper acetate, p-phenylenediamine, and 5,10,15,20-tetra-(4-aminophenyl)porphyrin via oxidative coupling reaction for the first time, and the resultant product was used for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemodynamic therapy (CDT). The polymer nanoparticles exhibited excellent photodynamic and photothermal effect with a photothermal conversion efficacy of 40.1% under 650 and 808 nm laser irradiation, respectively. Encapsulated Cu(I)/Cu(II) ions permitted Cu-PPT with glutathione (GSH) peroxidase-mimicking, catalase-mimicking, and Fenton-like activity to regulate TME. Depletion of overexpressed GSH would reduce antioxidant capacity, generated O2 could relieve hypoxia for enhancing PDT, and hyperthermia from PTT could promote the yield of ·OH. This multifunctional nanosystem with cascade reactions could inhibit tumor growth and activate immune responses effectively. By further combining with antiprogrammed death-ligand 1 (anti-PD-L1) checkpoint blockade therapy, distant tumor growth and cancer metastasis were successfully suppressed.


Asunto(s)
Cobre/química , Inmunoterapia/métodos , Nanopartículas/química , Fotoquimioterapia/métodos , Polímeros/química , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Humanos , Rayos Láser , Metástasis de la Neoplasia , Porfirinas/química
16.
Chemistry ; 25(17): 4315-4319, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30735271

RESUMEN

Covalent organic frameworks (COFs) have attracted great attention across diverse research fields. However, only a few reports about the biomedical application of COFs are found in the literature. Attributed to the highly porous and tunable structure, as well as good thermal stability, COFs show great potential as drug carriers for chemotherapy. In this work, doxorubicin (DOX) was successfully in situ loaded into a COF by a one-pot method for the first time. The resultant DOX@COF platform exhibited high drug-loading capacity (32.1 wt %) and pH-responsive release property. In vitro and in vivo experiments demonstrated its good biocompatibility and enhanced antitumor efficacy.

17.
Prep Biochem Biotechnol ; 47(1): 32-37, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26914283

RESUMEN

Biochar can enhance soil fertility to increase agricultural productivity, whereas its improvement in soil microbial activity is still unclear. In this article, the influence of biochar on the cell growth and the potassium-solubilizing activity of Bacillus mucilaginosus AS1153 was examined. The impact on cell growth is related to the biochar-derived feedstocks and the particle size of biochar. Both intrinsic features and inner component fraction can promote the cell growth of B. mucilaginosus AS1153. The potassium-solubilizing activity was increased by 80% when B. mucilaginosus was incubated in conjunction with the biochar derived from corn stover. The survival time of B. mucilaginosus also was prolonged by adsorption in biochar. The experimental results suggested that the biochar containing B. mucilaginosus could be used as a potential biofertilizer to sustain crop production.


Asunto(s)
Bacillus/metabolismo , Carbón Orgánico , Fertilizantes , Potasio/metabolismo , Adsorción , Bacillus/crecimiento & desarrollo , Productos Agrícolas , Tamaño de la Partícula , Solubilidad
18.
Nanotechnology ; 27(46): 46LT01, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27734810

RESUMEN

We report the synthesis of three-dimensional (3D) urchin-like Nb2O5 microstructures by a facile hydrothermal approach with subsequent annealing treatment. As anode materials for lithium-ion batteries, the 3D urchin-like Nb2O5 microstructures exhibit superior electrochemical performance with excellent rate capability as well as long-term cycling stability. The electrode delivers high capacity of 131 mA h g-1 after 1000 cycles at a high current density of 1 A g-1. The excellent electrochemical performance suggests the 3D urchin-like Nb2O5 microstructures may be a promising anode candidate for high-power lithium ion batteries.

19.
Materials (Basel) ; 17(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38399040

RESUMEN

Lithium-sulfur (Li-S) batteries have received extensive attention due to their numerous advantages, including a high theoretical specific capacity, high energy density, abundant reserves of sulfur in cathode materials, and low cost. Li-S batteries also face several challenges, such as the insulating properties of sulfur, volume expansion during charging and discharging processes, polysulfide shuttling, and lithium dendritic crystal growth. In this study, a composite of a porous multi-site diatomite-loaded graphene oxide material and a PAN fiber membrane is developed to obtain a porous and high-temperature-resistant GO/diatomite/polyacrylonitrile functional separator (GO/DE/PAN) to improve the electrochemical performance of Li-S batteries. The results show that the use of GO/DE/PAN helps to inhibit lithium phosphorus sulfide (LPS) shuttling and improve the electrolyte wetting of the separator as well as the thermal stability of the battery. The initial discharge capacity of the battery using GO/DE/PAN is up to 964.7 mAh g-1 at 0.2 C, and after 100 cycles, the reversible capacity is 683 mAh g-1 with a coulombic efficiency of 98.8%. The improved electrochemical performance may be attributed to the porous structure of diatomite and the layered composite of graphene oxide, which can combine physical adsorption and spatial site resistance as well as chemical repulsion to inhibit the shuttle effect of LPS. The results show that GO/DE/PAN has great potential for application in Li-S batteries to improve their electrochemical performance.

20.
Psychol Res Behav Manag ; 17: 1205-1219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524288

RESUMEN

Purpose: Kidney transplant recipients (KTRs) may experience symptoms that increase their fear of progression (FoP), but a dearth of research examines the issue from a patient-centered perspective. Our study aimed to first determine the category of symptom burden, then to explore the differences in characteristics of patients in different subgroups, and finally to analyze the impact of symptom subgroup on FoP. Patients and Methods: Sociodemographic and Clinical Characteristics, Symptom Experience Scale, and Fear of Progression Questionnaire-Short Form were used. Latent class analysis was used to group KTRs according to the occurrence of symptoms. We used multivariate logistic regression to analyze the predictors of different subgroups. The differences in FoP among symptom burden subgroups were analyzed by hierarchical multiple regression. Results: Three subgroups were identified, designated all-high (20.5%), moderate (39.9%), and all-low (39.6%) according to their symptom occurrence. Multivariate logistic regression showed that gender, post-transplant time, per capita monthly income, and hyperuricemia were the factors that distinguished and predicted the all-high subgroup (P < 0.05). Hierarchical multiple regression showed that symptom burden had a significant effect on FoP (class1 vs class3: ß = 0.327, P < 0.001; class2 vs class3: ß = 0.104, P = 0.046), explaining the 8.0% variance of FoP (ΔR2 = 0.080). Conclusion: KTRs generally experience moderate or low symptom burden, and symptom burden is an influencing factor in FoP. Identifying the traits of KTRs with high symptom burden can help clinicians develop targeted management strategies and ease FoP of KTRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA