Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(8): 2736-2749, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37233025

RESUMEN

Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.


Asunto(s)
Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ceras/metabolismo
2.
Appl Environ Microbiol ; 90(3): e0224523, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38319098

RESUMEN

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Asunto(s)
Enterobacter , Hifa , Enterobacter/genética , Enterobacter/metabolismo , Hifa/metabolismo , Fenilacetatos/metabolismo , Rhizoctonia/genética
3.
New Phytol ; 241(3): 1266-1276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984076

RESUMEN

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.


Asunto(s)
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Bangladesh/epidemiología , Zambia/epidemiología , Magnaporthe/genética , Cromosomas , Enfermedades de las Plantas/microbiología
4.
Mol Plant Microbe Interact ; 35(4): 336-348, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35100008

RESUMEN

The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Ascomicetos/genética , Mapeo Cromosómico , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
5.
Plant Biotechnol J ; 20(9): 1819-1832, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35656643

RESUMEN

Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress-associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non-transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.


Asunto(s)
Arabidopsis , Termotolerancia , Arabidopsis/genética , Grano Comestible/genética , Oxidación-Reducción , Termotolerancia/genética , Zea mays/genética
6.
PLoS Genet ; 15(9): e1008272, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513573

RESUMEN

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


Asunto(s)
Micosis/genética , Enfermedades de las Plantas/genética , Triticum/genética , Ascomicetos/genética , Cromosomas Fúngicos , Reordenamiento Génico/genética , Genoma Fúngico/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Poaceae/genética , Factores de Transcripción/genética
7.
Proc Natl Acad Sci U S A ; 116(42): 20938-20946, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31575748

RESUMEN

Plants are vulnerable to disease through pathogen manipulation of phytohormone levels, which otherwise regulate development, abiotic, and biotic responses. Here, we show that the wheat pathogen Xanthomonas translucens pv. undulosa elevates expression of the host gene encoding 9-cis-epoxycarotenoid dioxygenase (TaNCED-5BS), which catalyzes the rate-limiting step in the biosynthesis of the phytohormone abscisic acid and a component of a major abiotic stress-response pathway, to promote disease susceptibility. Gene induction is mediated by a type III transcription activator-like effector. The induction of TaNCED-5BS results in elevated abscisic acid levels, reduced host transpiration and water loss, enhanced spread of bacteria in infected leaves, and decreased expression of the central defense gene TaNPR1 The results represent an appropriation of host physiology by a bacterial virulence effector.


Asunto(s)
Ácido Abscísico/metabolismo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/biosíntesis , Triticum/microbiología , Xanthomonas/fisiología , Dioxigenasas/genética , Dioxigenasas/metabolismo , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/inmunología , Triticum/metabolismo , Virulencia , Xanthomonas/patogenicidad
8.
Fungal Genet Biol ; 152: 103571, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34015431

RESUMEN

Pyrenophora tritici-repentis is an ascomycete fungus that causes tan spot of wheat. The disease has a worldwide distribution and can cause significant yield and quality losses in wheat production. The fungal pathogen is homothallic in nature, which means it can undergo sexual reproduction by selfing to produce pseudothecia on wheat stubble for seasonal survival. Since homothallism precludes the development of bi-parental fungal populations, no genetic linkage map has been developed for P. tritici-repentis for mapping and map-based cloning of fungal virulence genes. In this work, we created two heterothallic strains by deleting one of the mating type genes in each of two parental isolates 86-124 (race 2) and AR CrossB10 (a new race) and developed a bi-parental fungal population between them. The draft genome sequences of the two parental isolates were aligned to the Pt-1C-BFP reference sequence to mine single nucleotide polymorphisms (SNPs). A total of 225 SNP markers were developed for genotyping the entire population. Additionally, 75 simple sequence repeat, and two gene markers were also developed and used in the genotyping. The resulting linkage map consisted of 13 linkage groups spanning 5,075.83 cM in genetic distance. Because the parental isolate AR CrossB10 is a new race and produces Ptr ToxC, it was sequenced using long-read sequencing platforms and de novo assembled into contigs. The majority of the contigs were further anchored into chromosomes with the aid of the linkage maps. The whole genome comparison of AR CrossB10 to the reference genome of M4 revealed a few chromosomal rearrangements. The genetic linkage map and the new AR CrossB10 genome sequence are valuable tools for gene cloning in P. tritici-repentis.


Asunto(s)
Ascomicetos/genética , Proteínas Fúngicas/genética , Ligamiento Genético , Micotoxinas/genética , Mapeo Cromosómico , Marcadores Genéticos , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Virulencia/genética
9.
Plant Physiol ; 183(4): 1898-1909, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32461303

RESUMEN

The phenotypes of plants develop over time and change in response to the environment. New engineering and computer vision technologies track these phenotypic changes. Identifying the genetic loci regulating differences in the pattern of phenotypic change remains challenging. This study used functional principal component analysis (FPCA) to achieve this aim. Time series phenotype data were collected from a sorghum (Sorghum bicolor) diversity panel using a number of technologies including conventional color photography and hyperspectral imaging. This imaging lasted for 37 d and centered on reproductive transition. A new higher density marker set was generated for the same population. Several genes known to control trait variation in sorghum have been previously cloned and characterized. These genes were not confidently identified in genome-wide association analyses at single time points. However, FPCA successfully identified the same known and characterized genes. FPCA analyses partitioned the role these genes play in controlling phenotypes. Partitioning was consistent with the known molecular function of the individual cloned genes. These data demonstrate that FPCA-based genome-wide association studies can enable robust time series mapping analyses in a wide range of contexts. Moreover, time series analysis can increase the accuracy and power of quantitative genetic analyses.


Asunto(s)
Sorghum/genética , Estudio de Asociación del Genoma Completo/métodos , Análisis de Componente Principal
10.
Theor Appl Genet ; 134(2): 633-645, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33164159

RESUMEN

KEY MESSAGE: Multiple origins of Indian dwarf wheat were due to two mutations targeting the same TREE domain of a GSK3-like kinase, and these mutations confer to enhanced drought tolerance and increased phosphate and nitrogen accumulation for adaptation to the dry climate of Indian and Pakistan. Indian dwarf wheat, featured by the short stature, erect leaves, dense spikes, and small, spherical grains, was a staple crop in India and Pakistan from the Bronze Age until the early 1900s. These morphological features are controlled by a single locus Sphaerococcum 1 (S1), but the genetic identity of the locus and molecular mechanisms underlying the selection of this wheat type are unknown. In this study, we showed that the origin of Indian dwarf wheat was due to two independent missense mutations targeting the conserved TREE domain of a GSK3-like kinase, which is homologous to the Arabidopsis BIN2 protein, a negative regulator in brassinosteroid signaling. The S1 protein is involved in brassinosteroid signaling by physical interaction with the wheat BES1/BZR1 proteins. The dwarf alleles are insensitive to brassinosteroid, upregulates brassinosteroid biosynthetic genes, significantly enhanced drought tolerance, facilitated phosphate accumulation, and increased high molecular weight glutenins. It is the enhanced drought tolerance and accumulation of nitrogen and phosphate that contributed to the adaptation of such a small-grain form of wheat to the dry climate of India and Pakistan. Thus, our research not only identified the genetic events underlying the origin of the Indian dwarf wheat, but also revealed the function of brassinosteroid in the regulation of drought tolerance, phosphate homeostasis, and grain quality.


Asunto(s)
Sequías , Glucógeno Sintasa Quinasa 3/metabolismo , Mutación , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Triticum/fisiología , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Fenotipo , Fosforilación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Triticum/genética
12.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069397

RESUMEN

Drought stress is a major constraint in global maize production, causing almost 30-90% of the yield loss depending upon growth stage and the degree and duration of the stress. Here, we report that ectopic expression of Arabidopsis glutaredoxin S17 (AtGRXS17) in field grown maize conferred tolerance to drought stress during the reproductive stage, which is the most drought sensitive stage for seed set and, consequently, grain yield. AtGRXS17-expressing maize lines displayed higher seed set in the field, resulting in 2-fold and 1.5-fold increase in yield in comparison to the non-transgenic plants when challenged with drought stress at the tasseling and silking/pollination stages, respectively. AtGRXS17-expressing lines showed higher relative water content, higher chlorophyll content, and less hydrogen peroxide accumulation than wild-type (WT) control plants under drought conditions. AtGRXS17-expressing lines also exhibited at least 2-fold more pollen germination than WT plants under drought stress. Compared to the transgenic maize, WT controls accumulated higher amount of proline, indicating that WT plants were more stressed over the same period. The results present a robust and simple strategy for meeting rising yield demands in maize under water limiting conditions.


Asunto(s)
Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequías , Expresión Génica Ectópica/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/fisiología , Termotolerancia/genética , Zea mays/genética
13.
Plant J ; 97(3): 530-542, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30375131

RESUMEN

Epicuticular waxes provide a hydrophobic barrier that protects land plants from environmental stresses. To elucidate the molecular functions of maize glossy mutants that reduce the accumulation of epicuticular waxes, eight non-allelic glossy mutants were subjected to transcriptomic comparisons with their respective wild-type siblings. Transcriptomic comparisons identified 2279 differentially expressed (DE) genes. Other glossy genes tended to be down-regulated in glossy mutants; by contrast stress-responsive pathways were induced in mutants. Gene co-expression network (GCN) analysis found that glossy genes were clustered, suggestive of co-regulation. Genes that potentially regulate the accumulation of glossy gene transcripts were identified via a pathway level co-expression analysis. Expression data from diverse organs showed that maize glossy genes are generally active in young leaves, silks, and tassels, while largely inactive in seeds and roots. Through reverse genetics, a DE gene homologous to Arabidopsis CER8 and co-expressed with known glossy genes was confirmed to participate in epicuticular wax accumulation. GCN data-informed forward genetics approach enabled cloning of the gl14 gene, which encodes a putative membrane-associated protein. Our results deepen understanding of the transcriptional regulation of the genes involved in the accumulation of epicuticular wax, and provide two maize glossy genes and a number of candidate genes for further characterization.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Ceras/metabolismo , Zea mays/genética , Expresión Génica , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Zea mays/metabolismo
14.
New Phytol ; 228(3): 1011-1026, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32569398

RESUMEN

Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.


Asunto(s)
Resistencia a la Enfermedad , Triticum , China , Resistencia a la Enfermedad/genética , Genes de Plantas , Nucleótidos , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
15.
Phytopathology ; 110(6): 1161-1173, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32040377

RESUMEN

Xanthomonas vasicola pv. vasculorum is an emerging bacterial plant pathogen that causes bacterial leaf streak on corn. First described in South Africa in 1949, reports of this pathogen have greatly increased in the past years in South America and in the United States. The rapid spread of this disease in North and South America may be due to more favorable environmental conditions, susceptible hosts and/or genomic changes that favored the spread. To understand whether genetic mechanisms exist behind the recent spread of X. vasicola pv. vasculorum, we used comparative genomics to identify gene acquisitions in X. vasicola pv. vasculorum genomes from the United States and Argentina. We sequenced 41 genomes of X. vasicola pv. vasculorum and the related sorghum-infecting X. vasicola pv. holcicola and performed comparative analyses against all available X. vasicola genomes. Time-measured phylogenetic analyses showed that X. vasicola pv. vasculorum strains from the United States and Argentina are closely related and arose from two introductions to North and South America. Gene content comparisons identified clusters of genes enriched in corn X. vasicola pv. vasculorum that showed evidence of horizontal transfer including one cluster corresponding to a prophage found in all X. vasicola pv. vasculorum strains from the United States and Argentina as well as in X. vasicola pv. holcicola strains. In this work, we explore the genomes of an emerging phytopathogen population as a first step toward identifying genetic changes associated with the emergence. The acquisitions identified may contain virulence determinants or other factors associated with the spread of X. vasicola pv. vasculorum in North and South America and will be the subject of future work.


Asunto(s)
Xanthomonas , Argentina , Genómica , Filogenia , Enfermedades de las Plantas , Sudáfrica , América del Sur , Estados Unidos , Zea mays
16.
Mol Biol Evol ; 35(11): 2762-2772, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184112

RESUMEN

Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5' ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10-5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.


Asunto(s)
Alelos , Intercambio Genético , Meiosis , Zea mays/genética , Expresión Génica , Sintenía , Zea mays/metabolismo
17.
Bioinformatics ; 34(20): 3470-3478, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29718177

RESUMEN

Motivation: Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges. Results: In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision. Availability and implementation: JRmGRN is available as a R program from: https://github.com/wenpingd. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Algoritmos , Funciones de Verosimilitud , Distribución Normal , Programas Informáticos
18.
J Exp Bot ; 70(12): 3089-3099, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30919902

RESUMEN

Cuticular waxes, long-chain hydrocarbon compounds, form the outermost layer of plant surfaces in most terrestrial plants. The presence of cuticular waxes protects plants from water loss and other environmental stresses. Cloning and characterization of genes involved in the regulation, biosynthesis, and extracellular transport of cuticular waxes onto the surface of epidermal cells have revealed the molecular basis of cuticular wax accumulation. However, intracellular trafficking of synthesized waxes to the plasma membrane for cellular secretion is poorly understood. Here, we characterized a maize glossy (gl6) mutant that exhibited decreased epicuticular wax load, increased cuticle permeability, and reduced seedling drought tolerance relative to wild-type. We combined an RNA-sequencing-based mapping approach (BSR-Seq) and chromosome walking to identify the gl6 candidate gene, which was confirmed via the analysis of multiple independent mutant alleles. The gl6 gene represents a novel maize glossy gene containing a conserved, but uncharacterized, DUF538 domain. This study suggests that the GL6 protein may be involved in the intracellular trafficking of cuticular waxes, opening the door to elucidating the poorly understood process by which cuticular wax is transported from its site of biosynthesis to the plasma membrane.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Ceras/metabolismo , Zea mays/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Plantones/metabolismo , Zea mays/metabolismo
19.
Nucleic Acids Res ; 45(21): e178, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036322

RESUMEN

Conventional genotyping-by-sequencing (cGBS) strategies suffer from high rates of missing data and genotyping errors, particularly at heterozygous sites. tGBS® genotyping-by-sequencing is a novel method of genome reduction that employs two restriction enzymes to generate overhangs in opposite orientations to which (single-strand) oligos rather than (double-stranded) adaptors are ligated. This strategy ensures that only double-digested fragments are amplified and sequenced. The use of oligos avoids the necessity of preparing adaptors and the problems associated with inter-adaptor annealing/ligation. Hence, the tGBS protocol simplifies the preparation of high-quality GBS sequencing libraries. During polymerase chain reaction (PCR) amplification, selective nucleotides included at the 3'-end of the PCR primers result in additional genome reduction as compared to cGBS. By adjusting the number of selective bases, different numbers of genomic sites are targeted for sequencing. Therefore, for equivalent amounts of sequencing, more reads per site are available for SNP calling. Hence, as compared to cGBS, tGBS delivers higher SNP calling accuracy (>97-99%), even at heterozygous sites, less missing data per marker across a population of samples, and an enhanced ability to genotype rare alleles. tGBS is particularly well suited for genomic selection, which often requires the ability to genotype populations of individuals that are heterozygous at many loci.


Asunto(s)
Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico , Sitios Genéticos , Genómica/métodos , Heterocigoto
20.
Theor Appl Genet ; 131(3): 649-658, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29218377

RESUMEN

KEY MESSAGE: A major gene conferring resistance to bacterial leaf streak was mapped to chromosome 5R in triticale. Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa (Xtu), is an important disease of wheat and triticale around the world. Although resistance to BLS is limited in wheat, several triticale accessions have high levels of resistance. To characterize the genetic basis of this resistance, we developed triticale mapping populations using a resistant accession (Siskiyou) and two susceptible accessions (UC38 and Villax St. Jose). Bulked segregant analysis in an F2 population derived from the cross of Siskiyou × UC38 led to the identification of a simple sequence repeat (SSR) marker (XSCM138) on chromosome 5R that co-segregated with the resistance gene. The cross of Siskiyou × Villax St. Jose was advanced into an F2:5 recombinant inbred line population and evaluated for BLS reaction. Genetic linkage maps on this population were assembled with markers generated using genotyping-by-sequencing as well as several SSR markers previously identified on 5R. Quantitative trait locus (QTL) mapping revealed a single major QTL on chromosome 5R, underlined by the same SSR marker as in the Siskiyou × UC38 population. The F1 hybrids of the two crosses were highly resistant to BLS, indicating that resistance is largely dominant. This work will facilitate introgression of this rye-derived BLS resistance gene into the wheat genome by molecular marker-mediated chromosome engineering.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticale/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Genotipo , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticale/microbiología , Xanthomonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA