Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 57(6): 957-970, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25684206

RESUMEN

Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.


Asunto(s)
Histona Demetilasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Empalme Alternativo , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Histona Demetilasas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Metilación , Proteínas de Microfilamentos/genética , Neuronas/citología , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo
2.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24847881

RESUMEN

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , MAP Quinasa Quinasa Quinasa 2/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MAP Quinasa Quinasa Quinasa 2/química , Quinasas Quinasa Quinasa PAM/química , Metilación , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Oncogénica p21(ras)/genética , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de Señal
3.
Blood ; 125(2): 346-57, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25395428

RESUMEN

Enhancer of zeste homolog 2 (EZH2) and related EZH1 control gene expression and promote tumorigenesis via methylating histone H3 at lysine 27 (H3K27). These methyltransferases are ideal therapeutic targets due to their frequent hyperactive mutations and overexpression found in cancer, including hematopoietic malignancies. Here, we characterized a set of small molecules that allow pharmacologic manipulation of EZH2 and EZH1, which include UNC1999, a selective inhibitor of both enzymes, and UNC2400, an inactive analog compound useful for assessment of off-target effect. UNC1999 suppresses global H3K27 trimethylation/dimethylation (H3K27me3/2) and inhibits growth of mixed lineage leukemia (MLL)-rearranged leukemia cells. UNC1999-induced transcriptome alterations overlap those following knockdown of embryonic ectoderm development, a common cofactor of EZH2 and EZH1, demonstrating UNC1999's on-target inhibition. Mechanistically, UNC1999 preferentially affects distal regulatory elements such as enhancers, leading to derepression of polycomb targets including Cdkn2a. Gene derepression correlates with a decrease in H3K27me3 and concurrent gain in H3K27 acetylation. UNC2400 does not induce such effects. Oral administration of UNC1999 prolongs survival of a well-defined murine leukemia model bearing MLL-AF9. Collectively, our study provides the detailed profiling for a set of chemicals to manipulate EZH2 and EZH1 and establishes specific enzymatic inhibition of polycomb repressive complex 2 (PRC2)-EZH2 and PRC2-EZH1 by small-molecule compounds as a novel therapeutics for MLL-rearranged leukemia.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Bifenotípica Aguda/enzimología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Animales , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2 , Inhibidores Enzimáticos/farmacología , Immunoblotting , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Mol Cell Proteomics ; 14(6): 1696-707, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25805797

RESUMEN

Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples.


Asunto(s)
Histonas/química , Péptidos/análisis , Cromatografía Liquida , Células HeLa , Humanos , Péptidos/química , Espectrometría de Masas en Tándem
5.
J Biol Chem ; 290(22): 13641-53, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25825497

RESUMEN

SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Asunto(s)
Antineoplásicos/química , Benzamidas/química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias/enzimología , Pirrolidinas/química , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Biología Computacional , Cristalización , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Histonas/química , Humanos , Espectrometría de Masas , Neoplasias/tratamiento farmacológico , Péptidos/química , Desnaturalización Proteica , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
6.
Proteomics ; 15(9): 1459-69, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25641854

RESUMEN

MS-based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization. However, the propionyl group is not sufficiently hydrophobic to fully retain the shortest histone peptides in RP LC, and such procedure also hampers the discovery of natural propionylation events. In this work we tested 12 commercially available anhydrides, selected based on their safety and hydrophobicity. Performance was evaluated in terms of yield of the reaction, MS/MS fragmentation efficiency, and drift in retention time using the following samples: (i) a synthetic unmodified histone H3 tail, (ii) synthetic modified histone peptides, and (iii) a histone extract from cell lysate. Results highlighted that seven of the selected anhydrides increased peptide retention time as compared to propionic, and several anhydrides such as benzoic and valeric led to high MS/MS spectra quality. However, propionic anhydride derivatization still resulted, in our opinion, as the best protocol to achieve high MS sensitivity and even ionization efficiency among the analyzed peptides.


Asunto(s)
Anhídridos/química , Histonas/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión/métodos , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Péptidos/análisis
7.
BMC Genomics ; 16 Suppl 5: S5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26040834

RESUMEN

BACKGROUND: A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. RESULTS: We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. CONCLUSIONS: We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.


Asunto(s)
Epigénesis Genética/fisiología , Hipocampo/fisiología , Histonas/genética , Memoria a Largo Plazo/fisiología , MicroARNs/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condicionamiento Psicológico/fisiología , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , MicroARNs/biosíntesis , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Transcripción Genética/genética
8.
Proteomics ; 14(19): 2226-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25116026

RESUMEN

HIV-1 replication requires the insertion of viral DNA into the host genome, which is catalyzed by HIV-1 integrase. This integration event can lead to vast changes in the chromatin landscape and gene transcription. In this study, we sought to correlate the extensive changes of histone PTM abundances with the equally dynamic shifts in host transcriptional activity. To fully capture the changes that were occurring during the course of HIV-infection, we performed time-courses in which we extracted both histones and mRNA from HIV-infected, UV-inactivated HIV-infected and mock-infected SUP-T1 cells. We then analyzed the alterations to histone PTM profiles using nano-LC-MS/MS, as well as the expression of chromatin-associated enzymes, such as histone deacetylases, acetyltransferases, demethylases, methyltransferases, and histone chaperone proteins. As expected, we observed major changes in histone PTM abundances, which we linked to massive fluctuations in mRNA expression of associated chromatin enzymes. However, we find few differences between HIV and HIVUV (UV-inactivated) infection, which suggests that initial histone PTM changes during HIV infection are from the host in response to the infection, and not due to the HIV virus manipulating the transcriptional machinery. We believe that these preliminary experiments can provide a basis for future forays into targeted manipulations of histone PTM-regulated aspects of HIV progression through its replication cycle.


Asunto(s)
Epigénesis Genética/fisiología , Infecciones por VIH/enzimología , Infecciones por VIH/metabolismo , Interacciones Huésped-Patógeno/fisiología , Línea Celular Tumoral , Análisis por Conglomerados , Enzimas/análisis , Enzimas/genética , Enzimas/metabolismo , Epigénesis Genética/genética , Infecciones por VIH/genética , VIH-1 , Histonas/genética , Histonas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteómica , Biología de Sistemas
9.
Front Microbiol ; 14: 1186819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187540

RESUMEN

In this study, an anammox reactor was operated to treat low-strength (NH4+ + NO2-, 25-35 mg/L) wastewater without (phase I) or with (phase II) readily biodegradable chemical oxygen demand (rbCOD). In phase I, although efficient nitrogen removal was achieved at the beginning, nitrate accumulated in the effluent after long-term operation (75 days), resulting in a decrease in the nitrogen removal efficiency to 30%. Microbial analysis revealed that the abundance of anammox bacteria decreased from 2.15 to 1.78%, whereas that of nitrite-oxidizing bacteria (NOB) increased from 0.14 to 0.56%. In phase II, rbCOD, in terms of acetate, was introduced into the reactor with a carbon/nitrogen ratio of 0.9. The nitrate concentration in the effluent decreased within 2 days. Advanced nitrogen removal was achieved in the following operation, with an average effluent total nitrogen of 3.4 mg/L. Despite the introduction of rbCOD, anammox pathway still dominated to the nitrogen loss. High-throughput sequencing indicated that high anammox abundance (2.48%) further supports its dominant position. The improvement in nitrogen removal was attributed to the enhanced suppression of NOB activity, simultaneous nitrate polishing through partial denitrification and anammox, and promotion of sludge granulation. Overall, the introduction of low concentrations of rbCOD is a feasible strategy for achieving robust and efficient nitrogen removal in mainstream anammox reactors.

10.
Huan Jing Ke Xue ; 41(6): 2635-2645, 2020 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-32608778

RESUMEN

The chromophoric dissolved organic matter (CDOM), the main component of dissolved organic matter, affects the morphological characteristics, migration, and conversion of pollutants in water. Based on UV-vis spectra and excitation emission matrix spectroscopy (EEMs) combined with the parallel factor analysis (PARAFAC), the spatial distribution and spectral characteristics were investigated and source analysis of CDOM was performed. Thus, the spatiotemporal differences in the CDOM in Gangnan Reservoir were analyzed. Results showed that a254, a260, a280, and a355 exhibited significant seasonal differences in Gangnan Reservoir, and the order of CDOM concentrations was summer > spring > autumn > winter. There are significant seasonal differences in the E2/E3, E3/E4, E4/E6, and SR of interstitial water CDOM. The concentrations of E2/E3, E3/E4, E4/E6, and SR were high in winter and low in summer. E2/E3 and E3/E4 in autumn and winter were significantly higher than those in spring and summer, and the E3/E4 in autumn and winter was greater than 3.5, which indicates that the CDOM of the autumn and winter sediments has a smaller molecular weight and a lower degree of humification. Protein-like substances (C1), short-wave fulvic acid (C2), and degraded humic substances (C3) were identified by the PARAFAC model, and there was a significant positive correlation among the three fluorescent components (P<0.001). The total fluorescence intensity of CDOM and the fluorescence intensity of each fluorescent component show significant seasonal differences. The total fluorescence intensity and the fluorescence intensity of each component show the highest levels in spring, followed by autumn and winter, and the lowest levels in summer. The proportion of each fluorescent component in autumn and winter and that of each fluorescent component in spring and summer showed no significant difference. There was a significant difference in the proportion of each fluorescent component between autumn/winter and spring/summer. The BIX and FI of CDOM for autumn and winter were higher than those for spring and summer, indicating that the autogenous source of CDOM in autumn and winter is stronger than that in spring and summer, which was consistent with the result of HIX. PCA and Adonis analysis showed that the spectral characteristics of CDOM exhibited obvious seasonal differences (P<0.001). Moreover, the C1, C2, and C3 and water quality parameters (NH4+, NO3-, NO2-, TDN, and TDP) exhibited significant correlation based on linear regression. The results could provide technical support for the control of organic carbon pollution sources and water quality management in Gangnan Reservoir.

11.
Huan Jing Ke Xue ; 41(5): 2177-2187, 2020 May 08.
Artículo en Zh | MEDLINE | ID: mdl-32608835

RESUMEN

To isolate the aerobic denitrification bacteria suitable for water quality in the low-temperature period of Baiyangdian Lake, a water quality investigation and bioinformatics analysis of the aerobic denitrification bacterial community were carried out using a MiSeq high-throughput sequencing technique based on napA. Moreover, α-diversity, ß-diversity, and network analyses were also carried out. The results showed significant differences in the water quality of different sampling sites in Baiyangdian Lake, and the estuary area exhibited the highest nitrogen concentration. α-diversity exhibited significant differences (P<0.05), and the abundance and diversity of ZZD and BH were the lowest. The operational taxonomic units of the water body mainly belonged to Proteobacteria (α-Proteobacteria, ß-Proteobacteria, and γ-Proteobacteria). Meanwhile, Venn diagram analysis indicated the community of aerobic denitrification bacteria exhibited significant differences, and variance inflation factor and redundancy analysis showed that temperature, dissolved oxygen, ammonia, nitrate, dissolved total phosphorus, and redox potential were the main environmental factors. Network analysis showed that symbiotic relationships accounted for a major proportion of the microbial network. Mantel test analysis shows that temperature, redox potential, nitrate, ammonia, dissolved total phosphorus, and iron and manganese are the key factors affecting the evolution of modular community structure. From all the results, the MiSeq high-throughput sequencing technique based on the napA gene was an effective tool to explore the changes of aerobic denitrification bacterial community structure, which could supply a reference to isolate the "directional-accurate-efficient" aerobic denitrification bacterial agent in the future.


Asunto(s)
Desnitrificación , Lagos , Bacterias , Congelación , Nitrógeno
12.
Epigenetics Chromatin ; 10: 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28706564

RESUMEN

BACKGROUND: Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. RESULTS: We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. CONCLUSIONS: These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.


Asunto(s)
Ácido Ascórbico/farmacología , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Vitaminas/farmacología , Animales , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Metilación , Ratones
13.
Curr Biol ; 27(23): 3579-3590.e6, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29153328

RESUMEN

Regulation of chromatin structure is critical for brain development and function. However, the involvement of chromatin dynamics in neurodegeneration is less well understood. Here we find, launching from Drosophila models of amyotrophic lateral sclerosis and frontotemporal dementia, that TDP-43 impairs the induction of multiple key stress genes required to protect from disease by reducing the recruitment of the chromatin remodeler Chd1 to chromatin. Chd1 depletion robustly enhances TDP-43-mediated neurodegeneration and promotes the formation of stress granules. Conversely, upregulation of Chd1 restores nucleosomal dynamics, promotes normal induction of protective stress genes, and rescues stress sensitivity of TDP-43-expressing animals. TDP-43-mediated impairments are conserved in mammalian cells, and, importantly, the human ortholog CHD2 physically interacts with TDP-43 and is strikingly reduced in level in temporal cortex of human patient tissue. These findings indicate that TDP-43-mediated neurodegeneration causes impaired chromatin dynamics that prevents appropriate expression of protective genes through compromised function of the chromatin remodeler Chd1/CHD2. Enhancing chromatin dynamics may be a treatment approach to amyotrophic lateral scleorosis (ALS)/frontotemporal dementia (FTD).


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/fisiopatología , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Persona de Mediana Edad
14.
Sci Rep ; 7: 39406, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28051095

RESUMEN

While distinct stem cell phenotypes follow global changes in chromatin marks, single-cell chromatin technologies are unable to resolve or predict stem cell fates. We propose the first such use of optical high content nanoscopy of histone epigenetic marks (epi-marks) in stem cells to classify emergent cell states. By combining nanoscopy with epi-mark textural image informatics, we developed a novel approach, termed EDICTS (Epi-mark Descriptor Imaging of Cell Transitional States), to discern chromatin organizational changes, demarcate lineage gradations across a range of stem cell types and robustly track lineage restriction kinetics. We demonstrate the utility of EDICTS by predicting the lineage progression of stem cells cultured on biomaterial substrates with graded nanotopographies and mechanical stiffness, thus parsing the role of specific biophysical cues as sensitive epigenetic drivers. We also demonstrate the unique power of EDICTS to resolve cellular states based on epi-marks that cannot be detected via mass spectrometry based methods for quantifying the abundance of histone post-translational modifications. Overall, EDICTS represents a powerful new methodology to predict single cell lineage decisions by integrating high content super-resolution nanoscopy and imaging informatics of the nuclear organization of epi-marks.


Asunto(s)
Variación Biológica Poblacional , Técnicas Citológicas/métodos , Epigénesis Genética , Procesamiento de Imagen Asistido por Computador/métodos , Células Madre Mesenquimatosas/clasificación , Células Madre Mesenquimatosas/citología , Imagen Óptica/métodos , Núcleo Celular/química , Cromatina/química , Humanos
15.
PLoS One ; 10(7): e0134586, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226299

RESUMEN

Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in this crop.


Asunto(s)
Secuencia Conservada/genética , Histonas/genética , Procesamiento Proteico-Postraduccional/genética , Saccharum/genética , Núcleo Celular/genética , Genes de Plantas/genética , Histonas/aislamiento & purificación , Immunoblotting , Filogenia , Saccharum/crecimiento & desarrollo , Homología de Secuencia
16.
Nat Med ; 21(10): 1199-208, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26366710

RESUMEN

The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Linfoma de Células B/etiología , Proteínas de Neoplasias/fisiología , Animales , Linfocitos B/patología , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Noqueados , Mutación , Proteínas de Neoplasias/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-24872844

RESUMEN

BACKGROUND: Histone post-translational modifications (PTMs) are key epigenetic regulators in chromatin-based processes. Increasing evidence suggests that vast combinations of PTMs exist within chromatin histones. These complex patterns, rather than individual PTMs, are thought to define functional chromatin states. However, the ability to interrogate combinatorial histone PTM patterns at the nucleosome level has been limited by the lack of direct molecular tools. RESULTS: Here we demonstrate an efficient, quantitative, antibody-free, chromatin immunoprecipitation-less (ChIP-less) method for interrogating diverse epigenetic states. At the heart of the workflow are recombinant chromatin reader domains, which target distinct chromatin states with combinatorial PTM patterns. Utilizing a newly designed combinatorial histone peptide microarray, we showed that three reader domains (ATRX-ADD, ING2-PHD and AIRE-PHD) displayed greater specificity towards combinatorial PTM patterns than corresponding commercial histone antibodies. Such specific recognitions were employed to develop a chromatin reader-based affinity enrichment platform (matrix-assisted reader chromatin capture, or MARCC). We successfully applied the reader-based platform to capture unique chromatin states, which were quantitatively profiled by mass spectrometry to reveal interconnections between nucleosomal histone PTMs. Specifically, a highly enriched signature that harbored H3K4me0, H3K9me2/3, H3K79me0 and H4K20me2/3 within the same nucleosome was identified from chromatin enriched by ATRX-ADD. This newly reported PTM combination was enriched in heterochromatin, as revealed by the associated DNA. CONCLUSIONS: Our results suggest the broad utility of recombinant reader domains as an enrichment tool specific to combinatorial PTM patterns, which are difficult to probe directly by antibody-based approaches. The reader affinity platform is compatible with several downstream analyses to investigate the physical coexistence of nucleosomal PTM states associated with specific genomic loci. Collectively, the reader-based workflow will greatly facilitate our understanding of how distinct chromatin states and reader domains function in gene regulatory mechanisms.

18.
Cell Metab ; 20(2): 306-319, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24998913

RESUMEN

Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl coenzyme A (acetyl-CoA) availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA:coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells.


Asunto(s)
Histonas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetilcoenzima A/metabolismo , Acetilación/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Análisis por Conglomerados , Coenzima A/metabolismo , Glioma/metabolismo , Glioma/patología , Glucosa/farmacología , Humanos , Interleucina-3/farmacología , Masculino , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas ras/genética , Proteínas ras/metabolismo
19.
Nat Commun ; 4: 1565, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23463008

RESUMEN

The chromatin template imposes an epigenetic barrier during the process of somatic cell reprogramming. Using fibroblasts derived from macroH2A double knockout (dKO) mice, here we show that these histone variants act cooperatively as a barrier to induced pluripotency. Through manipulation of macroH2A isoforms, we further demonstrate that macroH2A2 is the predominant barrier to reprogramming. Genomic analyses reveal that macroH2A1 and macroH2A2, together with H3K27me3, co-occupy pluripotency genes in wild-type (wt) fibroblasts. In particular, we find macroH2A isoforms to be highly enriched at target genes of the K27me3 demethylase, Utx, which are reactivated early in iPS reprogramming. Finally, while macroH2A dKO-induced pluripotent cells are able to differentiate properly in vitro and in vivo, such differentiated cells retain the ability to return to a stem-like state. Therefore, we propose that macroH2A isoforms provide a redundant silencing layer or terminal differentiation 'lock' at critical pluripotency genes that presents as an epigenetic barrier when differentiated cells are challenged to reprogram.


Asunto(s)
Reprogramación Celular , Histonas/metabolismo , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Cromatina/metabolismo , Dermis/citología , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Epigénesis Genética/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Genoma/genética , Células HEK293 , Histona Demetilasas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Tretinoina/farmacología
20.
Epigenetics ; 7(4): 340-3, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22419068

RESUMEN

Smyd3 is a lysine methyltransferase implicated in chromatin and cancer regulation. Here we show that Smyd3 catalyzes histone H4 methylation at lysine 5 (H4K5me). This novel histone methylation mark is detected in diverse cell types and its formation is attenuated by depletion of Smyd3 protein. Further, Smyd3-driven cancer cell phenotypes require its enzymatic activity. Thus, Smyd3, via H4K5 methylation, provides a potential new link between chromatin dynamics and neoplastic disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animales , Western Blotting , Cromatina/genética , Cromatina/metabolismo , Activación Enzimática , Fibroblastos/metabolismo , Fibroblastos/patología , Prueba de Complementación Genética , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Biblioteca de Péptidos , Fenotipo , Plásmidos/genética , Plásmidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA