Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012486

RESUMEN

The primer-guided entropy-driven high-throughput evolution of the DNA-based constitutional dynamic network, CDN, is introduced. The entropy gain associated with the process provides a catalytic principle for the amplified emergence of the CDN. The concept is applied to develop a programmable, spatially localized DNA circuit for effective in vitro and in vivo theranostic, gene-regulated treatment of cancer cells. The localized circuit consists of a DNA tetrahedron core modified at its corners with four tethers that include encoded base sequences exhibiting the capacity to emerge and assemble into a [2 × 2] CDN. Two of the tethers are caged by a pair of siRNA subunits, blocking the circuit into a mute, dynamically inactive configuration. In the presence of miRNA-21 as primer, the siRNA subunits are displaced, resulting in amplified release of the siRNAs silencing the HIF-1α mRNA and fast dynamic reconfiguration of the tethers into a CDN. The resulting CDN is, however, engineered to be dynamically reconfigured by miRNA-155 into an equilibrated mixture enriched with a DNAzyme component, catalyzing the cleavage of EGR-1 mRNA. The DNA tetrahedron nanostructure stimulates enhanced permeation into cancer cells. The miRNA-triggered entropy-driven reconfiguration of the spatially localized circuit leads to the programmable, cooperative bis-gene-silencing of HIF-1α and EGR-1 mRNAs, resulting in the effective and selective apoptosis of breast cancer cells and effective inhibition of tumors in tumor bearing mice.

2.
J Am Chem Soc ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013150

RESUMEN

Driven by the essential need of a green, safe, and low-cost approach to producing H2O2, a highly valuable multifunctional chemical, artificial photosynthesis emerges as a promising avenue. However, current catalyst systems remain challenging, due to the need of high-density sunlight, poor selectivity and activity, or/and unfavorable thermodynamics. Here, we reported that an indirect 2e- water oxidation reaction (WOR) in photocatalytic H2O2 production was unusually activated by C5N2 with piezoelectric effects. Interestingly, under ultrasonication, C5N2 exhibited an overall H2O2 photosynthesis rate of 918.4 µM/h and an exceptionally high solar-to-chemical conversion efficiency of 2.6% after calibration under weak light (0.1 sun). Mechanism studies showed that the piezoelectric effect of carbon nitride overcame the high uphill thermodynamics of *OH intermediate generation, which enabled a new pathway for 2e- WOR, the kinetic limiting step in the overall H2O2 production from H2O and O2. Benefiting from the outstanding sonication-assisted photocatalytic H2O2 generation under weak light, the concept was further successfully adapted to biomedical applications in efficient sono-photochemodynamic therapy for cancer treatment and water purification.

3.
Anal Chem ; 96(29): 12112-12119, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989957

RESUMEN

In situ sensitive detection of multiple biomarkers in a single cell was highly necessary for understanding the pathogenesis mechanism and facilitating disease diagnosis. Herein, a bipolar electrode (BPE)-electrochemiluminescence (ECL) imaging chip was designed for ultrasensitive in situ detection of multiple miRNAs in single cells based on a dual-signal amplification strategy. A single cell was trapped and lysed within the microtrap of the cathode chamber and an HCR amplification process and nanoprobes (Fc/DNA/Fe3O4) were introduced, leading to a large number of electroactive molecules (Fc) being modified on the surface. Under a suitable potential, Fc+ in the cathodic chamber was reduced to Fc and L-012 was oxidized in the anodic chamber according to the electric neutrality principle of the bipolar electrode system, resulting in the ECL signal recorded by EMCCD. Ascribed to the dual-signal amplification, sensitive visual detection of miRNA-21 and miRNA-155 in single cells was achieved. For MCF-7 cells, miRNA-21 and miRNA-155 were calculated to be 4385 and 1932 copies/cell (median), respectively. For HeLa cells, miRNA-21 and miRNA-155 were calculated to be 1843 and 1012 copies/cell (median), respectively. The comprehensive evaluation of two kinds of miRNA could effectively eliminate error signals, and the detection precision was improved by 10%.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Mediciones Luminiscentes , MicroARNs , Análisis de la Célula Individual , MicroARNs/análisis , Humanos , Células HeLa , Células MCF-7 , Límite de Detección
4.
Anal Chem ; 96(22): 9218-9227, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38781682

RESUMEN

In situ monitoring of cell secretions and communications plays a fundamental role in screening of disease diagnostic biomarkers and drugs. Quantitative detection of cell secretions and monitoring of intercellular communication have been separately reported, which often rely on target labeling or complex pretreatment steps, inevitably causing damage to the target. Simultaneous in situ noninvasive detection of cell secretions and monitoring of intercellular communication are challenging and have never been reported. Herein, we smartly developed a portable device for in situ label-free monitoring of cell secretions and communications with fluorescence and ion-transport-based nanochannel electrochemistry. Based on the dual signal mode, a series of nonelectroactive secretions were sensitively and accurately quantified. The detection limits for VEGF, MUC1, and ATP were 3.84 pg/mL, 32.7 pg/mL, and 47.4 fM (3σ/S), which were 1/3.9, 1/1.1, and 1/41 of those of commercial ELISA kits, respectively. More interestingly, under the released secretions, the gradual opening of the nanochannel connected the two cells in the left and right chambers of the device; thus, the secretion mediated intercellular communication can be monitored. The proposed platform may provide a promising tool for understanding the mechanism of intercellular communication and discovering new therapeutic targets.


Asunto(s)
Técnicas Electroquímicas , Humanos , Técnicas Electroquímicas/instrumentación , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Mucina-1/análisis , Mucina-1/metabolismo , Comunicación Celular , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fluorescencia , Límite de Detección
5.
Anal Chem ; 96(5): 2165-2172, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38284353

RESUMEN

The profiling of multiple glycans on a single cell is important for elucidating glycosylation mechanisms and accurately identifying disease states. Herein, we developed a closed bipolar electrode (BPE) array chip for live single-cell trapping and in situ galactose and sialic acid detection with the electrochemiluminescence (ECL) method. Methylene blue-DNA (MB-DNA) as well as biotin-DNA (Bio-DNA) codecorated AuNPs were prepared as nanoprobes, which were selectively labeled on the cell surface through chemoselective labeling techniques. The individual cell was captured and labeled in the microtrap of the cathodic chamber, under an appropriate potential, MB molecules on the cellular membrane underwent oxidation, triggering the reduction of [Ru(bpy)3]2+/TPA and consequently generating ECL signals in the anodic chamber. The abundance of MB groups on the single cell enabled selective monitoring of both sialic acid and galactosyl groups with high sensitivity using ECL. The sialic acid and galactosyl content per HepG2 cell were detected to be 0.66 and 0.82 fmol, respectively. Through comprehensive evaluation of these two types of glycans on a single cell, tumor cells, and normal cells could be effectively discriminated and the accuracy of single-cell heterogeneous analysis was improved. Additionally, dynamic monitoring of variations in galactosyl groups on the surface of the single cell was also achieved. This work introduced a straightforward and convenient approach for heterogeneity analysis among single cells.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Mediciones Luminiscentes/métodos , Oro , Ácido N-Acetilneuramínico , Técnicas Biosensibles/métodos , Electrodos , ADN , Técnicas Electroquímicas/métodos
6.
Analyst ; 149(12): 3363-3371, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38712505

RESUMEN

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.


Asunto(s)
Oro , Polímeros Impresos Molecularmente , Dióxido de Silicio , Espectrometría Raman , Transferrina , Humanos , Espectrometría Raman/métodos , Transferrina/análisis , Transferrina/química , Oro/química , Polímeros Impresos Molecularmente/química , Dióxido de Silicio/química , Límite de Detección , Nanotubos/química , Nanopartículas de Magnetita/química , Impresión Molecular/métodos , Ácidos Borónicos/química , Polímeros/química , Compuestos de Sulfhidrilo
7.
Angew Chem Int Ed Engl ; : e202408935, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895986

RESUMEN

Reactive oxygen species (ROS) regulation for single-atom nanozymes (SAzymes), e.g., Fe-N-C, is a key scientific issue that determines the activity, selectivity, and stability of aerobic reaction. However, the poor understanding of ROS formation mechanism on SAzymes greatly hampers their wider deployment. Herein, inspired by cytochromes P450 affording bound ROS intermediates in O2 activation, we report Fe-N-C containing the same FeN4 but with tunable second-shell coordination can effectively regulate ROS production pathways. Remarkably, compared to the control Fe-N-C sample, the second-shell sulfur functionalized Fe-N-C delivered a·2.4-fold increase of oxidase-like activity via the bound Fe=O intermediate. Conversely, free ROS (•O2-) release was significantly reduced after functionalization, down to only 17% of that observed for Fe-N-C. The detailed characterizations and theoretical calculations revealed that the second-shell sulfur functionalization significantly altered the electronic structure of FeN4 sites, leading to an increase of electron density at Fermi level. It enhanced the electron transfer from active sites to the key intermediate *OOH, thereby ultimately determining the type of ROS in aerobic oxidation process. The proposed Fe-N-Cs with different second-shell anion were further applied to three aerobic oxidation reactions with enhanced activity, selectivity, and stability.

8.
J Am Chem Soc ; 145(23): 12617-12629, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37257165

RESUMEN

The enzyme-free catalytic hairpin assembly (CHA) process is introduced as a functional reaction module for guided, high-throughput, emergence, and evolution of constitutional dynamic networks, CDNs, from a set of nucleic acids. The process is applied to assemble networks of variable complexities, functionalities, and spatial confinement, and the systems provide possible mechanistic pathways for the evolution of dynamic networks under prebiotic conditions. Subjecting a set of four or six structurally engineered hairpins to a promoter P1 leads to the CHA-guided emergence of a [2 × 2] CDN or the evolution of a [3 × 3] CDN, respectively. Reacting of a set of branched three-arm DNA-hairpin-functionalized junctions to the promoter strand activates the CHA-induced emergence of a three-dimensional (3D) CDN framework emulating native gene regulatory networks. In addition, activation of a two-layer CHA cascade circuit or a cross-catalytic CHA circuit and cascaded driving feedback-driven evolution of CDNs are demonstrated. Also, subjecting a four-hairpin-modified DNA tetrahedron nanostructure to an auxiliary promoter strand simulates the evolution of a dynamically equilibrated DNA tetrahedron-based CDN that undergoes secondary fueled dynamic reconfiguration. Finally, the effective permeation of DNA tetrahedron structures into cells is utilized to integrate the four-hairpin-functionalized tetrahedron reaction module into cells. The spatially localized miRNA-triggered CHA evolution and reconfiguration of CDNs allowed the logic-gated imaging of intracellular RNAs. Beyond the bioanalytical applications of the systems, the study introduces possible mechanistic pathways for the evolution of functional networks under prebiotic conditions.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Nanoestructuras , ADN Catalítico/química , Retroalimentación , ADN/química , Nanoestructuras/química , Catálisis
9.
Anal Chem ; 95(16): 6620-6628, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37040595

RESUMEN

The development of electrochemiluminescence (ECL) emitters of different colors with high ECL efficiency (ΦECL) is appealing yet challenging for ultrasensitive multiplexed bioassays. Herein, we report the synthesis of highly efficient polymeric carbon nitride (CN) films with fine-tuned ECL emission from blue to green (410, 450, 470, and 525 nm) using the precursor crystallization method. More importantly, naked eye-observable and significantly enhanced ECL emission was achieved, and the cathodic ΦECL values were ca. 112, 394, 353, and 251 times those of the aqueous Ru(bpy)3Cl2/K2S2O8 reference. Mechanism studies showed that the density of surface-trapped electrons, the associated nonradiative decay pathways, and electron-hole recombination kinetics were crucial factors for the high ΦECL of CN. Based on high ΦECL and different colors of ECL emission, the wavelength-resolved multiplexing ECL biosensor was constructed to simultaneously detect miRNA-21 and miRNA-141 with superior low detection limits of 0.13 fM and 25.17 aM, respectively. This work provides a facile method to synthesize wavelength-resolved ECL emitters based on metal-free CN polymers with high ΦECL for multiplexed bioassays.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Fotometría , Técnicas Biosensibles/métodos , Polímeros
10.
Anal Chem ; 95(44): 16407-16417, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37883696

RESUMEN

Regulation of the reaction pathways is a perennial theme in the field of chemistry. As a typical chromogenic substrate, 3,3',5,5'-tetramethylbenzidine (TMB) generally undertakes one-electron oxidation, but the product (TMBox1) is essentially a confused complex and is unstable, which significantly hampers the clinic chromogenic bioassays for more than 50 years. Herein, we report that sodium dodecyl sulfate (SDS)-based micelles could drive the direct two-electron oxidation of TMB to the final stable TMBox2. Rather than activation of H2O2 oxidant in the one-electron TMB oxidation by common natural peroxidase, activation of the TMB substrate by SDS micelles decoupled the thermodynamically favorable complex between TMBox2 with unreacted TMB, leading to an unusual direct two-electron oxidation pathway. Mechanism studies demonstrated that the complementary spatial and electrostatic isolation effects, caused by the confined hydrophobic cavities and negatively charged outer surfaces of SDS micelles, were crucial. Further cascading with glucose oxidase, as a proof-of-concept application, allowed glucose to be more reliably measured, even in a broader range of concentrations without any conventional strong acid termination.


Asunto(s)
Peróxido de Hidrógeno , Micelas , Oxidación-Reducción , Peroxidasa/metabolismo , Bencidinas/química , Colorimetría , Compuestos Cromogénicos/química
11.
Anal Chem ; 95(39): 14511-14515, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37721425

RESUMEN

Photoacoustic (PA) imaging of urokinase-type plasminogen activator (uPA) activity in vivo holds high promise for early diagnosis of breast cancer. Molecular probes with resisted fluorescence (FL) emission for enhanced PA signals of uPA activity have not been reported. Herein, we proposed a molecular probe Cbz-Gly-Gly-Arg-Phe-Phe-IR775 (Z-GGRFF-IR775) which, upon uPA cleavage, assembled into nanoparticles FF-IR775-NP with quenched fluorescence but enhanced PA signals. Experimental results validated that, upon uPA activation, Z-GGRFF-IR775 exhibited 4.7-fold, 4.1-fold, and 2.9-fold higher PA signals over those in uPA inhibitor-treated control groups in vitro, in MDA-MB-231 cells, and in a tumor-bearing mouse model, respectively. We anticipate that this probe could be applied for highly sensitive PA imaging of uPA activity in early stage malignant tumors in the near future.


Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Animales , Ratones , Activador de Plasminógeno de Tipo Uroquinasa , Diagnóstico por Imagen , Receptores del Activador de Plasminógeno Tipo Uroquinasa
12.
Anal Chem ; 95(36): 13716-13724, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650675

RESUMEN

Photoelectrochemical (PEC) sensing enables the rapid, accurate, and highly sensitive detection of biologically important chemicals. However, achieving high selectivity without external biological elements remains a challenge because the PEC reactions inherently have poor selectivity. Herein, we report a strategy to address this problem by regulating the charge-transfer pathways using polymeric carbon nitride (pCN)-based heterojunction photoelectrodes. Interestingly, because of redox reactions at different semiconductor/electrolyte interfaces with specific charge-transfer pathways, each analyte demonstrated a unique combination of photocurrent-change polarity. Based on this principle, a pCN-based PEC sensor for the highly selective sensing of ascorbic acid in serum against typical interferences, such as dopamine, glutathione, epinephrine, and citric acid was successfully developed. This study sheds light on a general PEC sensing strategy with high selectivity without biorecognition units by engineering charge-transfer pathways in heterojunctions on photoelectrodes.


Asunto(s)
Ácido Ascórbico , Ácido Cítrico , Dopamina , Ingeniería
13.
Small ; 19(41): e2206959, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37322406

RESUMEN

Excessive accumulations of reactive oxygen species (ROS) and amyloid-ß (Aß) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aß fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aß fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aß binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aß plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aß deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Nanoestructuras , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Terapia Fototérmica , Péptidos beta-Amiloides/metabolismo
14.
Analyst ; 148(19): 4850-4856, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622412

RESUMEN

Synthetic cannabinoids (SCs) are a series of artificial chemical substances with pharmacological properties similar to those of natural cannabinoids and their abuse poses a great risk to social security and human health. However, the highly sensitive detection of low concentrations of SCs in human serum remains a great challenge. In this work, we developed a highly sensitive, rapid and highly selective method for the detection of SCs in human serum. Magnetic molecularly imprinted polymer (MIP) nanocomposites were prepared through self-polymerization of dopamine and template molecules on the surfaces of magnetic beads. 9H-Carbazole-9-hexanol (9CH) was used as a template molecule because of its long chain structure shared with six synthetic cannabinoids and its ability to provide specific recognition sites. With these magnetic MIP nanoparticles, six SCs could be rapidly and effectively extracted from human blood. The concentrations of six SCs could be accurately determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. The limits of detection were in the range of 0.1-0.3 ng mL-1. The proposed method is characterized by high sensitivity and selectivity, and has great potential for application in the analysis of practical samples.


Asunto(s)
Cannabinoides , Impresión Molecular , Humanos , Polímeros Impresos Molecularmente , Cromatografía Líquida de Alta Presión/métodos , Fenómenos Magnéticos , Impresión Molecular/métodos
15.
Angew Chem Int Ed Engl ; 62(27): e202302463, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37144706

RESUMEN

Ascorbate (H2 A) is a well-known antioxidant to protect cellular components from free radical damage and has also emerged as a pro-oxidant in cancer therapies. However, such "contradictory" mechanisms underlying H2 A oxidation are not well understood. Herein, we report Fe leaching during catalytic H2 A oxidation using an Fe-N-C nanozyme as a ferritin mimic and its influence on the selectivity of the oxygen reduction reaction (ORR). Owing to the heterogeneity, the Fe-Nx sites in Fe-N-C primarily catalyzed H2 A oxidation and 4 e- ORR via an iron-oxo intermediate. Nonetheless, trace O2 ⋅- produced by marginal N-C sites through 2 e- ORR accumulated and attacked Fe-Nx sites, leading to the linear leakage of unstable Fe ions up to 420 ppb when the H2 A concentration increased to 2 mM. As a result, a substantial fraction (ca. 40 %) of the N-C sites on Fe-N-C were activated, and a new 2+2 e- ORR path was finally enabled, along with Fenton-type H2 A oxidation. Consequently, after Fe ions diffused into the bulk solution, the ORR at the N-C sites stopped at H2 O2 production, which was the origin of the pro-oxidant effect of H2 A.

16.
Angew Chem Int Ed Engl ; 62(12): e202217078, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36591995

RESUMEN

Facile evaluation of oxygen reduction reaction (ORR) kinetics for electrocatalysts is critical for sustainable fuel-cell development and industrial H2 O2 production. Despite great success in ORR studies using mainstream strategies, such as the membrane electrode assembly, rotation electrodes, and advanced surface-sensitive spectroscopy, the time and spatial distribution of reactive oxygen species (ROS) intermediates in the diffusion layer remain unknown. Using time-dependent electrochemiluminescence (Td-ECL), we report an intermediate-oriented method for ORR kinetics analysis. Owing to multiple ultrasensitive stoichiometric reactions between ROS and the ECL emitter, except for electron transfer numbers and rate constants, the potential-dependent time and spatial distribution of ROS were successfully obtained for the first time. Such exclusively uncovered information would guide the development of electrocatalysts for fuel cells and H2 O2 production with maximized activity and durability.

17.
Anal Chem ; 94(50): 17625-17633, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36475634

RESUMEN

Luminol is one of the most widely used electrochemiluminescence (ECL) reagents, yet the detailed mechanism and kinetics of the electrochemical oxidation of luminol remain unclear. We propose a model that describes the electrochemical oxidation of luminol as multiple electron transfer reactions followed by an irreversible chemical reaction, and we applied a finite element method simulation to analyze the electron transfer kinetics in alkaline solutions. Although negligible at higher pH values, the adsorption of luminol on the glassy carbon electrode became noticeable in a solution with pH = 12. Additionally, various types of adsorption behaviors were observed for luminol derivatives and analogues, indicating that the molecular structure affected not only the oxidation but also the adsorption process. The adsorption effect was analyzed through a model with a Langmuir isotherm to show that the saturated surface concentration as well as the reaction kinetics increased with decreasing pH, suggesting a competition for the active sites between the molecule and OH-. Moreover, we show that the ECL intensity could be boosted through the adsorption effect by collecting the ECL intensity generated through the electrochemical oxidation of luminol and a luminol analogue, L012, in a solution with pH = 13. In contrast with luminol, a significant adsorption effect was observed for L012 at pH = 13, and the ECL intensity was enhanced by the adsorbed species, especially at higher scan rates. The magnitude of the enhancement of the ECL intensity matched well with the simulation using our model.


Asunto(s)
Técnicas Biosensibles , Luminol , Luminol/química , Carbono , Adsorción , Luminiscencia , Electrodos , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos
18.
Anal Chem ; 94(20): 7350-7357, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35543747

RESUMEN

Inspired by the promising applications of a closed bipolar electrodes (c-BPEs) system in electrochemiluminescence (ECL) detection of cell adhesion and disease-related biomarkers, here, a gold nanowires array-based c-BPEs system was constructed for cell surface protein detection. Regular and uniform gold nanowires array were prepared by intermittent potentiostatic deposition. Then, two poly(dimethylsiloxane) (PDMS) chips with a hole diameter of 2 mm as a reservoir were placed at both sides of Au nanowires array to construct c-BPEs system. Thionine-functionalized silicon dioxide nanoparticles conjugated to antibody (Ab2-Th@SiO2) were used as the electrochemical probe, while [Ru(bpy)3]2+-wrapped SiO2 nanoparticles (Ru(II)@SiO2) were employed as the ECL signal readout. Taking α-fetoprotein (AFP) as model, the gold nanowires array-based c-BPEs system allowed sensitive detection of AFP at a linear range from 0.002 to 50.0 ng/mL and at least 6 living cells ascribing to the synergetic amplification effect at both sensing and reporting chambers. Besides, the amount of AFP expressed by HepG2 cells was calculated to be 6.71 pg/cell. The presented strategy with high sensitivity provided a promising and universal platform for the detection of other cancer cells and disease-related biomarkers (such as proteins, glycan, miRNA).


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanocables , Técnicas Electroquímicas , Oro , Límite de Detección , Mediciones Luminiscentes , Dióxido de Silicio , alfa-Fetoproteínas
19.
Anal Chem ; 94(23): 8489-8496, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35657105

RESUMEN

Recent studies on autophagy demonstrated a new extracellular secretion pathway for autophagosomes in addition to the routinely described intracellular degradation pathway. Besides, the secretory autophagosomes were found closely related to the occurrence and development of cancers. Therefore, analysis of the protein expression on secretory autophagosomes is a promising noninvasive strategy for cancer diagnosis and mechanism study. Herein, we constructed a three-dimensional (3D) microfluidic chip employing a fusiform micropillar array and layer-by-layer modification of gelatins, which obviously enhanced the mass transfer between reactants and increased the immobilization sites for capture antibody. As a result, the autophagosome capture efficiency of the 3D chip (74%) is significantly higher than that of the unmodified flat chip (47%). Using a two-step immunoreaction, ovarian cancer cell-secreted autophagosomes were successfully captured and detected. The results showed that two proteins, LC3B and HSP60 at the surface of autophagosomes, can be detected with limits of detection (LODs) of 141 particles µL-1 and 126 particles µL-1, respectively. In addition, both LC3B and HSP60 expressions on autophagosomes can be used to distinguish the serum samples between cancer patients and healthy people, with a p value less than 0.01 (statistically significant difference) or 0.05 (statistically different), respectively. Moreover, the summed signal of LC3B and HSP60 showed a p value less than 0.001 (extremely statistically significant difference), demonstrating the good potential of this chip for further application in cancer diagnosis.


Asunto(s)
Autofagosomas , Neoplasias , Autofagosomas/metabolismo , Autofagia , Humanos , Proteínas de la Membrana/metabolismo , Microfluídica , Neoplasias/metabolismo
20.
Anal Chem ; 94(7): 3296-3302, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35143169

RESUMEN

Due to near-zero optical background and photobleaching, electrochemiluminescence (ECL), an optical phenomenon excited by electrochemical reactions, has drawn extensive attention, especially for ultrasensitive bioassays. Developing diverse ECL emitters is crucial to unlocking their multiformity and performances but remains a formidable challenge due to the rigorous requirements for ECL. Herein, we report a general strategy to light up ECL-inactive dyes in an aqueous solution via grafting, a well-developed concept for plant propagation since 500 BCE. As a proof of concept, a series of luminol donor-dye acceptor-based ECL emitters were grafted with near-unity resonance energy transfer (RET) efficiency and coarse/fine-tunable emission wavelengths. Rather than the sophisticated design of new skeleton-based molecules to meet all of the prerequisites for ECL in a constrained manner, each unit in the proposed ECL ensemble performed its functions maximally. As a result, beyond traditional two-dimensional (2D) ones, a three-dimensional (3D) coordinate biosensing system, simultaneously showing a calibration curve and selectivity, was established using the new ECL emitter. This lighting up strategy would generally address the scarcity of ECL emitters and enable unprecedented functions.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Colorantes , Técnicas Electroquímicas/métodos , Transferencia de Energía , Mediciones Luminiscentes/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA