Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32934009

RESUMEN

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Asunto(s)
Dictyostelium/enzimología , Prolil Hidroxilasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cinética , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Prolil Hidroxilasas/química , Prolil Hidroxilasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
2.
Biochem Biophys Res Commun ; 534: 1020-1025, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131771

RESUMEN

Significant cellular morphology changes in renal tubules were observed in diabetes patients and animal models. However, the interaction between insulin and tubular epithelial cells microvillar structure remains obscure. To understand microvillar dynamics, we used Scanning Ion Conductance Microscope to visualize microvillar in the living cell. Here, we found two layers of microvilli on the tubular epithelial cell surface: short compact microvilli and netlike long microvilli. Insulin treatment could increase microvilli length and density. This process was mediated by the PI3K/PLCγ signaling pathway, other than the PI3K/Arp2/3 signal pathway. In conclusion, our findings present a novel insulin signaling transduction mechanism, which contributes to understanding renal tubular epithelial cell microvilli dynamic regulation.


Asunto(s)
Células Epiteliales/metabolismo , Insulina/metabolismo , Túbulos Renales/metabolismo , Microvellosidades/metabolismo , Fosfolipasa C gamma/metabolismo , Transducción de Señal , Animales , Anuros , Línea Celular , Células Epiteliales/citología , Humanos , Túbulos Renales/citología
3.
Nat Commun ; 12(1): 891, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563959

RESUMEN

Post-translational methylation plays a crucial role in regulating and optimizing protein function. Protein histidine methylation, occurring as the two isomers 1- and 3-methylhistidine (1MH and 3MH), was first reported five decades ago, but remains largely unexplored. Here we report that METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mouse and human proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is preferably a small amino acid, allowing METTL9 to methylate a number of HxH-containing proteins, including the immunomodulatory protein S100A9 and the NDUFB3 subunit of mitochondrial respiratory Complex I. Notably, METTL9-mediated methylation enhances respiration via Complex I, and the presence of 1MH in an HxH-containing peptide reduced its zinc binding affinity. Our results establish METTL9-mediated 1MH as a pervasive protein modification, thus setting the stage for further functional studies on protein histidine methylation.


Asunto(s)
Metilhistidinas/metabolismo , Metiltransferasas/metabolismo , Proteoma/metabolismo , Secuencias de Aminoácidos , Animales , Células Cultivadas , Histidina/metabolismo , Humanos , Mamíferos/clasificación , Mamíferos/genética , Mamíferos/metabolismo , Metilación , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mutación , Procesamiento Proteico-Postraduccional , Proteoma/química , Especificidad por Sustrato , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA