Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Insect Mol Biol ; 33(5): 503-515, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38808749

RESUMEN

DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Temperatura , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Secuencia de Aminoácidos , Filogenia , Especies Introducidas
2.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063207

RESUMEN

Within the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) complex, two cryptic species, namely Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), are important invasive pests affecting global agriculture and horticulture. They were introduced into China sequentially in the mid-1990s and around 2003, respectively. Subsequently, the latter invader MED has outcompeted the earlier invader MEAM1, becoming the dominant population in the field. Although extensive studies have explored the underlying mechanisms driving this shift, the contribution of population genetics remains notably underexplored. In this study, we analyzed the genetic diversity and structure of 22 MED and 8 MEAM1 populations from various regions of China using mitochondrial DNA sequencing and microsatellite genotyping. Our results indicate low and moderate levels of genetic differentiation among geographically separate populations of MED and MEAM1, respectively. Median-joining network analysis of mtCOI gene haplotypes revealed no clear geographic structuring for either, with common haplotypes observed across provinces, although MED had more haplotypes. Comparative analyses revealed that MED presented greater genetic diversity than MEAM1 on the basis of two markers. Furthermore, analysis of molecular variance supported these findings, suggesting that while some genetic variation exists between populations, a significant amount is also present within populations. These findings reveal the population genetics of the two invasive cryptic species of the B. tabaci complex in China and suggest that the disparities in genetic diversity drive the displacement of their populations in the field. This work also provides valuable information on the genetic factors influencing the population dynamics and dominance of these invasive whitefly species.


Asunto(s)
Variación Genética , Haplotipos , Hemípteros , Especies Introducidas , Repeticiones de Microsatélite , Animales , Hemípteros/genética , Hemípteros/clasificación , China , Repeticiones de Microsatélite/genética , Genética de Población , ADN Mitocondrial/genética , Filogenia
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339028

RESUMEN

General odorant-binding proteins (GOBPs) play a crucial role in the detection of host plant volatiles and pheromones by lepidopterans. Previous studies identified two duplications in the GOBP2 gene in Cydia pomonella. In this study, we employed qRT-PCR, protein purification, and fluorescence competitive binding assays to investigate the functions of three GOBP2 genes in C. pomonella. Our findings reveal that CpomGOBP2a and CpomGOBP2b are specifically highly expressed in antennae, while CpomGOBP2c exhibits high specific expression in wings, suggesting a potential divergence in their functions. Recombinant proteins of CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c were successfully expressed and purified, enabling an in-depth exploration of their functions. Competitive binding assays with 20 host plant volatiles and the sex pheromone (codlemone) demonstrated that CpomGOBP2a exhibits strong binding to four compounds, namely butyl octanoate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), codlemone, and geranylacetone, with corresponding dissolution constants (Ki) of 8.59993 µM, 9.14704 µM, 22.66298 µM, and 22.86923 µM, respectively. CpomGOBP2b showed specific binding to pear ester (Ki = 17.37481 µM), while CpomGOBP2c did not exhibit binding to any tested compounds. In conclusion, our results indicate a functional divergence among CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c. These findings contribute valuable insights for the development of novel prevention and control technologies and enhance our understanding of the evolutionary mechanisms of olfactory genes in C. pomonella.


Asunto(s)
Dodecanol/análogos & derivados , Mariposas Nocturnas , Receptores Odorantes , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Ésteres , Proteínas de Insectos/metabolismo
4.
Biology (Basel) ; 13(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534447

RESUMEN

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), which is native to tropical Africa, has invaded more than 100 countries and constitutes a risk to the citrus sector. Studying its potential geographical distribution (PGD) in the context of global climate change is important for prevention and control efforts worldwide. Therefore, we used the CLIMEX model to project and assess the risk of global invasion by C. capitata under current (1981-2010) and future (2040-2059) climates. In the prevailing climatic conditions, the area of PGD for C. capitata was approximately 664.8 × 105 km2 and was concentrated in South America, southern Africa, southern North America, eastern Asia, and southern Europe. Under future climate conditions, the area of PGD for C. capitata is projected to decrease to approximately 544.1 × 105 km2 and shift to higher latitudes. Cold stress was shown to affect distribution at high latitudes, and heat stress was the main factor affecting distribution under current and future climates. According to the predicted results, countries with highly suitable habitats for C. capitata that have not yet been invaded, such as China, Myanmar, and Vietnam, must strengthen quarantine measures to prevent the introduction of this pest.

5.
Insects ; 15(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535403

RESUMEN

Tomato is the most preferred host plant for Tuta absoluta, a newly emerged devastating invasive pest in China. However, no study has evaluated the damage risk of T. absoluta on processed tomato worldwide. In the current study, the life table parameters of T. absoluta were systematically investigated on five tomato cultivars (one fresh tomato cultivar, four processed tomato cultivars) to determine their susceptibility to T. absoluta infestation. T. absoluta had a better population growth ability on the fresh tomato, "Dafen", showing shorter duration of the preadult stage, higher lifetime fecundity, and a higher intrinsic rate of increase compared to four processed tomato cultivars. Meanwhile, the life table parameters of T. absoluta among different processed tomato cultivars also showed significant differences. Th9 was the most susceptible to T. absoluta attack, while Th1902, Heinz1015, and Dimen2272 were the least suitable ones for its development and reproduction. In summary, these tomato cultivars are the most recommended for commercial tomato production to reduce the damage caused by T. absoluta and improve the integrated pest management strategy.

6.
iScience ; 27(7): 110154, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39050704

RESUMEN

Insects have evolved effectors to regulate host defenses for efficient feeding, yet their impact on chewing insects, like the tomato leaf miner (Phthorimaea absoluta), a significant pest, is poorly understood. We used RNAi to target the REPAT38 gene in larvae, monitoring changes at 0.5, 1, 2, and 4 h in leaf stomata, plant hormone concentrations (jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA)), and 12 hormone-responsive genes to explore the molecular mechanism of REPAT38-mediated plant-insect interactions. The results showed that the effector induced stomatal closure at 0.5 h and inhibited the synthesis of JA, ET, and ABA at 1 h. Additionally, seven plant hormone-responsive genes-AOC, MYC2, ACS1A, PAL, PR1, EIL2, and SRK2E-were inhibited at various time points. Our data suggest that REPAT38, as an effector with conserved functions, can weaken tomato host defenses and conducive to insect adaptation to host plants.

7.
Insects ; 15(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786904

RESUMEN

Spodoptera exempta, known as the black armyworm, has been extensively documented as an invasive agricultural pest prevalent across various crop planting regions globally. However, the potential geographical distribution and the threat it poses to host crops of remains unknown at present. Therefore, we used an optimized MaxEnt model based on 841 occurrence records and 19 bioclimatic variables to predict the potential suitable areas of S. exempta under current and future climatic conditions, and the overlap with wheat, rice, and maize planting areas was assessed. The optimized model was highly reliable in predicting potential suitable areas for this pest. The results showed that high-risk distribution areas for S. exempta were mainly in developing countries, including Latin America, central South America, central Africa, and southern Asia. Moreover, for the three major global food crops, S. exempta posed the greatest risk to maize planting areas (510.78 × 104 km2), followed by rice and wheat planting areas. Under future climate scenarios, global warming will limit the distribution of S. exempta. Overall, S. exempta had the strongest effect on global maize production areas and the least on global wheat planting areas. Our study offers a scientific basis for global prevention of S. exempta and protection of agricultural crops.

8.
Environ Sci Pollut Res Int ; 31(9): 13575-13590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253826

RESUMEN

Invasive alien pests (IAPs) pose a major threat to global agriculture and food production. When multiple IAPs coexist in the same habitat and use the same resources, the economic loss to local agricultural production increases. Many species of the Diabrotica genus, such as Diabrotica barberi, Diabrotica undecimpunctata, and Diabrotica virgifera, originating from the USA and Mexico, seriously damaged maize production in North America and Europe. However, the potential geographic distributions (PGDs) and degree of ecological niche overlap among the three Diabrotica beetles remain unclear; thus, the potential coexistence zone is unknown. Based on environmental and species occurrence data, we used an ensemble model (EM) to predict the PGDs and overlapping PGD of the three Diabrotica beetles. The n-dimensional hypervolumes concept was used to explore the degree of niche overlap among the three species. The EM showed better reliability than the individual models. According to the EM results, the PGDs and overlapping PGD of the three Diabrotica beetles were mainly distributed in North America, Europe, and Asia. Under the current scenario, D. virgifera has the largest PGD ranges (1615 × 104 km2). In the future, the PGD of this species will expand further and reach a maximum under the SSP5-8.5 scenario in the 2050s (2499 × 104 km2). Diabrotica virgifera showed the highest potential for invasion under the current and future global warming scenarios. Among the three studied species, the degree of ecological niche overlap was the highest for D. undecimpunctata and D. virgifera, with the highest similarity in the PGD patterns and maximum coexistence range. Under global warming, the PGDs of the three Diabrotica beetles are expected to expand to high latitudes. Identifying the PGDs of the three Diabrotica beetles provides an important reference for quarantine authorities in countries at risk of invasion worldwide to develop specific preventive measures against pests.


Asunto(s)
Escarabajos , Animales , Calentamiento Global , Reproducibilidad de los Resultados , Agricultura/métodos , Ecosistema , Zea mays
9.
Front Plant Sci ; 15: 1393663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817934

RESUMEN

Cabomba caroliniana A. Gray, an ornamental submerged plant indigenous to tropical America, has been introduced to numerous countries in Europe, Asia, and Oceania, impacting native aquatic ecosystems. Given this species is a popular aquarium plant and widely traded, there is a high risk of introduction and invasion into other environments. In the current study the potential global geographic distribution of C. caroliniana was predicted under the effects of climate change and human influence in an optimised MaxEnt model. The model used rigorously screened occurrence records of C. caroliniana from hydro informatic datasets and 20 associated influencing factors. The findings indicate that temperature and human-mediated activities significantly influenced the distribution of C. caroliniana. At present, C. caroliniana covers an area of approximately 1531×104 km2 of appropriate habitat, especially in the south-eastern parts of South, central and North America, Southeast Asia, eastern Australia, and most of Europe. The suitable regions are anticipated to expand under future climate scenarios; however, the dynamics of the changes vary between different extents of climate change. For example, C. caroliniana is expected to expand to higher latitudes, following global temperature increases under SSP1-2.6 and SSP2-4.5 scenarios, however, intolerance to temperature extremes may mediate invasion at higher latitudes under future extreme climate scenarios, e.g., SSP5-8.5. Owing to the severe impacts its invasion causes, early warning and stringent border quarantine processes are required to guard against the introduction of C. caroliniana especially in the invasion hotspots such as, Peru, Italy, and South Korea.

10.
Heliyon ; 10(11): e32268, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882321

RESUMEN

Epiphyas postvittana, commonly known as the light brown apple moth (LBAM), is native to Australia and has a restricted global distribution. Its polyphagous nature and the recent surge in interceptions have emphasized the need for focused risk assessments to guide effective measures to curb the entry of this pest into new countries. This study aimed to perform a detailed global invasion risk assessment using an optimized MaxEnt model that incorporated 19 bioclimatic variables and elevation. The predictive outcomes underscored the significance of key variables, specifically the minimum temperature of the coldest month (bio6), precipitation of the driest month (bio14), and precipitation of the coldest quarter (bio19), in shaping the potential geographical distribution of LBAM. Regions beyond the existing range, including the southeastern United States, southern Brazil, eastern Argentina, Uruguay, southern Chile, and various Western European countries, were identified as susceptible to invasion and establishment by LBAM. An increase in suitability was observed above 45°N and 40°S under future climate scenario. With respect to climate change, LBAM would expand its potential range in Western Europe and the United States, especially under SSP5-8.5, in the 2050s. An upward trend in the latitudinal suitability gradient for LBAM in mid-high latitude areas implies that amid changing climate conditions, LBAM may find favorable habitats in these regions. For countries and regions with invasion risk, it is imperative to implement corresponding inspections and quarantine measures to thwart the introduction of LBAM, particularly in countries with established trade ties with invaded regions.

11.
Life (Basel) ; 14(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39063624

RESUMEN

The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a highly destructive invasive pest targeting Solanaceae crops. Its olfactory system plays a crucial role in host location, mate finding, and other behavioral activities. However, there is a notable gap in the literature regarding the characterization of its chemosensory genes. In this study, we conducted a genome-wide identification of 58 odorant receptors (ORs) of T. absoluta. The identified ORs exhibit coding sequence (CDS) lengths ranging from 1062 bp to 1419 bp, encoding proteins of 354 to 473 amino acids. Gene structure analysis showed that the majority of these ORs consist of five, seven, eight, or nine exons, collectively representing 67% of the total ORs identified. Through chromosomal mapping, we identified several tandemly duplicate genes, including TabsOR12a, TabsOR12b, TabsOR12c, TabsOR21a, TabsOR21b, TabsOR34a, TabsOR34b, TabsOR34c, TabsOR62a, and TabsOR62b. The phylogenetic analysis indicated that six TabsORs were clustered within the lepidopteran sex pheromone receptor clade, while an expansion clade containing ten TabsORs resulted from tandem duplication events. Additionally, five TabsORs were classified into a specific OR clade in T. absoluta. Furthermore, through RNA-Seq and RT-qPCR analyses, we identified five TabsORs (TabsOR21a, TabsOR26a, TabsOR34a, TabsOR34c, and TabsOR36) exhibiting female-antennae-biased expression. Our study provides a valuable foundation to further investigations into the molecular and ecological functions of TabsORs, particularly in relation to oviposition behavior. These findings provide foundational data for the future exploration of the functions of female-biased expression OR genes in T. absoluta, thereby facilitating the further development of eco-friendly attract-and-kill techniques for the prevention and control of T. absoluta.

12.
Insects ; 15(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921148

RESUMEN

Phthorimaea absoluta (Meyrick) is an invasive pest that has caused damage to tomatoes and other crops in China since 2017. Pest control is mainly based on chemical methods that pose significant threats to food safety and environmental and ecological security. Light-induced control, a green prevention and control technology, has gained attention recently. However, current light-trapping technology is non-specific, attracting targeted pests alongside natural enemies and non-target organisms. In this study, we characterized the phototactic behavior of tomato leaf miners for the development a specific light-trapping technology for pest control. In situ hybridization revealed opsin expression throughout the body. Furthermore, we investigated the tropism of pests (wild T. absoluta, Toxoptera graminum, and Bemisia tabaci) and natural enemies (Nesidiocoris tenuis and Trichogramma pintoi) using a wavelength-lamp tropism experiment. We found that 365 ± 5 nm light could accurately trap wild P. absoluta without trapping natural enemies and other insects. Finally, we analyzed the phototactic behavior of the mutant strains LW2(-/-) and BL(-/-). LW2 and BL mutants showed significant differences in phototactic behavior. The LW2(-/-) strain was attracted to light at 390 ± 5 nm and the BL(-/-) strain was unresponsive to any light. Our findings will help to develop specific light-trapping technology for controlling tomato leaf miners, providing a basis for understanding pest population dynamics and protecting crops against natural enemies.

13.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467214

RESUMEN

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Asunto(s)
Visión de Colores , Mariposas Nocturnas , Animales , Opsinas/genética , Opsinas/metabolismo , Especies Introducidas , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Insectos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA