Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 32(5): 1252-1265, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504519

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has made great progress in treating lymphoma, yet patient outcomes still vary greatly. The lymphoma microenvironment may be an important factor in the efficacy of CAR T therapy. In this study, we designed a highly multiplexed imaging mass cytometry (IMC) panel to simultaneously quantify 31 biomarkers from 13 patients with relapsed/refractory diffuse large B cell lymphoma (DLBCL) who received CAR19/22 T cell therapy. A total of 20 sections were sampled before CAR T cell infusion or after infusion when relapse occurred. A total of 35 cell clusters were identified, annotated, and subsequently redefined into 10 metaclusters. The CD4+ T cell fraction was positively associated with remission duration. Significantly higher Ki67, CD57, and TIM3 levels and lower CD69 levels in T cells, especially the CD8+/CD4+ Tem and Te cell subsets, were seen in patients with poor outcomes. Cellular neighborhood containing more immune cells was associated with longer remission. Fibroblasts and vascular endothelial cells resided much closer to tumor cells in patients with poor response and short remission after CAR T therapy. Our work comprehensively and systematically dissects the relationship between cell composition, state, and spatial arrangement in the DLBCL microenvironment and the outcomes of CAR T cell therapy, which is beneficial to predict CAR T therapy efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral/inmunología , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/inmunología , Análisis de la Célula Individual/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Femenino , Masculino , Resultado del Tratamiento , Persona de Mediana Edad , Adulto , Biomarcadores de Tumor , Anciano
2.
Ann Hematol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763940

RESUMEN

Transplantation-associated thrombotic microangiopathy (TA-TMA) is a well-recognized serious complication of hematopoietic stem cell transplantation (HSCT). The understanding of TA-TMA pathophysiology has expanded in recent years. Dysregulation of the complement system is thought to cause endothelial injury and, consequently, microvascular thrombosis and tissue damage. TA-TMA can affect multiple organs, and each organ exhibits specific features of injury. Central nervous system (CNS) manifestations of TA-TMA include posterior reversible encephalopathy syndrome, seizures, and encephalopathy. The development of neurological dysfunction is associated with a significantly lower overall survival in patients with TA-TMA. However, there are currently no established histopathological or radiological criteria for the diagnosis of CNS TMA. Patients who receive total body irradiation (TBI), calcineurin inhibitors (CNI), and severe acute and chronic graft-versus-host disease (GVHD) are at a high risk of experiencing neurological complications related to TA-TMA and should be considered for directed TA-TMA therapy. However, the incidence and clinical manifestations of TA-TMA neurotoxicity remain unclear. Studies specifically examining the involvement of CNS in TMA syndromes are limited. In this review, we discuss clinical manifestations and imaging abnormalities in patients with nervous system involvement in TA-TMA. We summarize the mechanisms underlying TA-TMA and its neurological complications, including endothelial injury, evidence of complement activation, and treatment options for TA-TMA.

3.
Environ Res ; 219: 115123, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549490

RESUMEN

Under current climatic conditions, developing eco-friendly and climate-smart fertilizers has become increasingly important.The co-application of biochar and compost on agricultural soils has received considerable attention recently.Unfortunately, little is known about its effects on specific microbial taxa involved in carbon and nitrogen transformation in the soil.Herein, we report the efficacy of applying biochar-based amendments on soil physicochemical indices, enzymatic activity, functional genes, bacterial community, and their network patterns in corn rhizosphere at seedling (SS), flowering (FS), and maturity (MS) stages.The applied treatments were: compost alone (COM), biochar alone (BIOC), composted biochar (CMB), fortified compost (CMWB), and the control (no fertilizer (CNTRL).The non-metric multidimensional scaling (NMDS) indicated total nitrogen (TN), pH, NO3--N, urease, protease, and microbial biomass C (MBC) as the dominant environmental factors driving soil bacteria in this study.The dominant N mediating genes belonged to nitrate reductase (narG) and nitronate monooxygenase (amo), while beta-galactosidase, catalase, and alpha-amylase were the dominant genes observed relating to C cycling.Interestingly, the abundance of these genes was higher in COM, CMWB, and CMB compared with the CNTRL and BIOC treatments.The bacteria network properties of CWMB and CMB indicated robust niche overlap associated with high cross-feeding between bacterial communities compared to other treatments.Path and stepwise regression analyses revealed norank_Reyranellaceae and Sphingopyxis in CMWB as the major bacterial genera and the major predictive indices mediating soil organic C (SOC), NH4+-N, NO3--N, and TN transformation.Overall, biochar with compost amendments improved soil nutrient conditions, regulated the composition of the bacterial community, and benefited C/N cycling in the soil ecosystem.


Asunto(s)
Compostaje , Microbiota , Carbono , Zea mays , Nitrógeno/análisis , Suelo/química , Bacterias/genética , Fertilizantes/análisis , Microbiología del Suelo
4.
J Environ Manage ; 325(Pt B): 116694, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343400

RESUMEN

Poor management of crop residues leads to environmental pollution and composting is a sustainable practice for addressing the challenge. However, knowledge about composting with pure crop straw is still limited, which is a novel and feasible composting strategy. In this study, pure corn straw was in-situ composted for better management. Community structure of ß-glucosidase-producing microorganisms during composting was deciphered using high-throughput sequencing. Results showed that the compost was mature with organic matter content of 37.83% and pH value of 7.36 and pure corn straw could be composted successfully. Cooling phase was major period for cellulose degradation with the highest ß-glucosidase activity (476.25 µmol·p-Nitr/kg·dw·min) and microbial diversity (Shannon index, 3.63; Chao1 index, 500.81). Significant compositional succession was observed in the functional communities during composting with Streptomyces (14.32%), Trichoderma (13.85%) and Agromyces (11.68%) as dominant genera. ß-Glucosidase-producing bacteria and fungi worked synergistically as a network to degrade cellulose with Streptomyces (0.3045**) as the key community revealed by multi-interaction analysis. Organic matter (-0.415***) and temperature (-0.327***) were key environmental parameters regulating cellulose degradation via influencing ß-glucosidase-producing communities, and ß-glucosidase played a key role in mediating this process. The above results indicated that responses of ß-glucosidase-producing microorganisms to cellulose degradation were reflected at both network and individual levels and multi-interaction analysis could better explain the relationship between variables concerning composting cellulose degradation. The work is of significance for understanding cellulose degradation microbial communities and process during composting of pure corn straw.


Asunto(s)
Compostaje , Streptomyces , Trichoderma , beta-Glucosidasa/metabolismo , Zea mays/metabolismo , Suelo , Celulosa/metabolismo , Trichoderma/metabolismo , Streptomyces/metabolismo , Estiércol
5.
J Med Virol ; 94(11): 5325-5335, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35859097

RESUMEN

Establishment of rapid on-site detection technology capable of concurrently detecting SARS-Cov-2 and influenza A virus is urgent to effectively control the epidemic from these two types of important viruses. Accordingly, we developed a reusable dual-channel optical fiber immunosensor (DOFIS), which utilized the evanescent wave-sensing properties and tandem detection mode of the mobile phase, effectively accelerating the detection process such that it can be completed within 10 min. It could detect the nucleoprotein of multiple influenza A viruses (H1N1, H3N2, and H7N9), as well as the spike proteins of the SARS-CoV-2 Omicron and Delta variants, and could respond to 20 TCID50 /ml SARS-CoV-2 pseudovirus and 100 TCID50 /ml influenza A (A/PR/8/H1N1), presenting lower limit of detection and wider linear range than enzyme-linked immunosorbent assay. The detection results on 26 clinical samples for SARS-CoV-2 demonstrated its specificity (100%) and sensitivity (94%), much higher than the sensitivity of commercial colloidal gold test strip (35%). Particularly, DOFIS might be reused more than 80 times, showing not only cost-saving but also potential in real-time monitoring of the pathogenic viruses. Therefore, this newly-developed DOFIS platform is low cost, simple to operate, and has broad spectrum detection capabilities for SARS-CoV-2 mutations and multiple influenza A strains. It may prove suitable for deployment as a rapid on-site screening and surveillance technique for infectious disease.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Humanos , Inmunoensayo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/diagnóstico , SARS-CoV-2/genética
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(4): 442-446, 2022 Apr 10.
Artículo en Zh | MEDLINE | ID: mdl-35446985

RESUMEN

Congenital thrombotic thrombocytopenic purpura, also known as Upshaw-Schulman syndrome, is a rare autosomal recessive genetic disorder. The main pathogenesis is homozygous or compound heterozygous variants of von Willebrand factor lyase (ADAMTS13) gene mapped to chromosome 9q34, which may result in severe lack of ADAMTS13 which cleaves von Willebrand factor (vWF) multimers in the plasma and increase the risk of microvascular thrombosis, leading to various complications. The advance of research on the pathogenesis of cTTP, recombinant human ADAMTS13 and gene therapy have made breakthroughs which may lead to cure of cTTP. This article has provided a review for the latest progress made in the diagnosis and treatment of cTTP.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Proteínas ADAM/genética , Proteína ADAMTS13/genética , Homocigoto , Humanos , Púrpura Trombocitopénica Trombótica/diagnóstico , Púrpura Trombocitopénica Trombótica/genética , Púrpura Trombocitopénica Trombótica/terapia , Factor de von Willebrand/genética
7.
Mar Drugs ; 18(6)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512803

RESUMEN

More and more attention has been paid to bioactive compounds isolated from marine organisms or microorganisms in recent years. At the present study, a new protein coded as HPCG2, was purified from Scapharca broughtonii by stepwise chromatography methods. The molecular weight of HPCG2 was determined to be 30.71 kDa by MALDI-TOF-MS. The complete amino acid sequence of HPCG2 was obtained by tandem mass spectrometry combined with transcriptome database analysis, and its secondary structure was analyzed using circular dichroism. HPCG2 comprised 251 amino acids and contained 28.4% α-helix, 26% ß-sheet, 18.6% ß-turn, and 29.9% random coil. HPCG2 was predicted to be a cysteine-rich secretory protein-related (CRISP-related) protein by domain prediction. Moreover, HPCG2 was proved to possess the immunomodulatory effect on the murine immune cells. MTT assay showed that HPCG2 promoted the proliferation of splenic lymphocytes and the cytotoxicity of NK cells against YAC-1 cells. Flow cytometry test revealed that HPCG2 enhanced the phagocytic function of macrophages and polarized them into M1 type in RAW264.7 cells. In particular, Western blot analysis indicated that the immunomodulatory mechanism of HPCG2 was associated with the regulation on TLR4/JNK/ERK and STAT3 signaling pathways in RAW 264.7 cells. These results suggested that HPCG2 might be developed as a potential immunomodulatory agent or new functional product from marine organisms.


Asunto(s)
Glicoproteínas de Membrana/aislamiento & purificación , Glicoproteínas de Membrana/farmacología , Scapharca , Secuencia de Aminoácidos , Animales , Proteínas Portadoras , Perfilación de la Expresión Génica , Interleucina-6/metabolismo , Proteínas con Dominio LIM , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Mar Drugs ; 17(9)2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505835

RESUMEN

Diverse bioactive substances derived from marine organisms have been attracting growing attention. Besides small molecules and polypeptides, numerous studies have shown that marine proteins also exhibit antitumor activities. Small anticancer proteins can be expressed in vivo by viral vectors to exert local and long-term anticancer effects. Herein, we purified and characterized a novel protein (ASP-3) with unique antitumor activity from Arca subcrenata Lischke. The ASP-3 contains 179 amino acids with a molecular weight of 20.6 kDa. The spectral characterization of ASP-3 was elucidated using Fourier Transform infrared spectroscopy (FTIR) and Circular Dichroism (CD) spectroscopy. Being identified as a sarcoplasmic calcium-binding protein, ASP-3 exhibited strong inhibitory effects on the proliferation of Human hepatocellular carcinoma (HepG2) cells with an IC50 value of 171.18 ± 18.59 µg/mL, measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The RNA-seq analysis showed that ASP-3 regulated the vascular endothelial growth factor receptor (VEGFR) signaling pathway in HepG2 cells. Immunofluorescence results indicated that ASP-3 effectively reduced VEGFR2 phosphorylation in HepG2 cells and affected the downstream components of VEGF signaling pathways. The surface plasmon resonance (SPR) analysis further demonstrated that ASP-3 direct interacted with VEGFR2. More importantly, the therapeutic potential of ASP-3 as an anti-angiogenesis agent was further confirmed by an in vitro model using VEGF-induced tube formation assay of human umbilical vein endothelial cells (HUVECs), as well as an in vivo model using transgenic zebrafish model. Taken together, the ASP-3 provides a good framework for the development of even more potent anticancer proteins and provides important weapon for cancer treatment using novel approaches such as gene therapy.


Asunto(s)
Antineoplásicos/farmacología , Arcidae/química , Productos Biológicos/farmacología , Proteínas/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Animales Modificados Genéticamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra
10.
Comput Biol Med ; 173: 108254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520924

RESUMEN

Chronic Lung Allograft Dysfunction (CLAD) is a critical post-transplant complication that predominantly determines the long-term survival rates and quality of life of patients undergoing lung transplantation. The limited efficacy of current immunosuppressive strategies underscores our incomplete understanding of the immunological aspects of CLAD. Hence, there is an urgent need for more comprehensive and targeted research to unravel the complex interplay of immune cells in the development and progression of CLAD. This study conducts an in-depth analysis of the immune environment in CLAD. By examining the gene expression profiles of T cells, natural killer cells, B cells, macrophages, and monocytes, we have elucidated a unique immunological landscape in CLAD compared to healthy controls. We highlight the heterogeneity within the immune populations and provide a comprehensive understanding of the immune mechanisms driving CLAD. Enrichment analysis identified specific pathways that are either overactive or suppressed in CLAD, revealing potential molecular targets for therapeutic intervention. Our findings emphasize the crucial role of T cells in the pathophysiology of CLAD, coordinating the immune response and revealing an amplified immune cell network, potentially leading to maladaptive tissue responses. By integrating a comprehensive cellular and molecular portrait of the immune environment, our research not only deepens our understanding of the pathogenesis of CLAD but also lays a foundational approach for the development of targeted therapies.


Asunto(s)
Trasplante de Pulmón , Transcriptoma , Humanos , Transcriptoma/genética , Calidad de Vida , Perfilación de la Expresión Génica , Pulmón , Aloinjertos , Estudios Retrospectivos
11.
Front Cell Infect Microbiol ; 14: 1336821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357445

RESUMEN

Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Terapia de Fagos , Infecciones Estafilocócicas , Animales , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fagos de Staphylococcus
12.
Eur J Sport Sci ; 24(6): 834-845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874991

RESUMEN

This study investigates whether exercise as a strategy for improving physical fitness at sea level also offers comparable benefits in the unique context of high altitudes (HA), considering the physiological challenges of hypoxic conditions. Overall, 121 lowlanders who had lived on the Tibetan Plateau for >2 years and were still living at HA during the measurements were randomly classified into four groups. Each individual of the low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) groups performed 20 sessions of aerobic exercise at HA (3680 m) over 4 weeks, while the control group (CG) did not undergo any intervention. Physiological responses before and after the intervention were observed. The LI and MI groups experienced significant improvement in cardiopulmonary fitness (0.27 and 0.35 L/min increases in peak oxygen uptake [ V ˙ $\dot{\mathrm{V}}$ O2peak], both p < 0.05) after exercise intervention, while the hematocrit (HCT) remained unchanged (p > 0.05). However, HI exercise was less efficient for cardiopulmonary fitness of lowlanders (0.02 L/min decrease in V ˙ $\dot{\mathrm{V}}$ O2peak, p > 0.05), whereas both the HCT (1.74 %, p < 0.001) and glomerular filtration rate (18.41 mL/min, p < 0.001) increased with HI intervention. Therefore, LI and MI aerobic exercise, rather than HI, can help lowlanders in Tibet become more acclimated to the HA by increasing cardiopulmonary function and counteracting erythrocytosis.


Asunto(s)
Aclimatación , Altitud , Capacidad Cardiovascular , Ejercicio Físico , Consumo de Oxígeno , Humanos , Tibet , Ejercicio Físico/fisiología , Masculino , Adulto , Aclimatación/fisiología , Consumo de Oxígeno/fisiología , Capacidad Cardiovascular/fisiología , Femenino , Hematócrito , Adulto Joven , Tasa de Filtración Glomerular/fisiología , Aptitud Física/fisiología , Frecuencia Cardíaca/fisiología
13.
ACS Chem Neurosci ; 15(11): 2283-2295, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780450

RESUMEN

Oxidative stress and neuroinflammation in the aging brain are correlated with the development of neurodegenerative diseases, such as Alzheimer's disease (AD). The blood-brain barrier (BBB) poses a significant challenge to the effective delivery of therapeutics for AD. Prior research has demonstrated that menthol (Men) can augment the permeability of the BBB. Consequently, in the current study, we modified Men on the surface of liposomes to construct menthol-modified quercetin liposomes (Men-Qu-Lips), designed to cross the BBB and enhance quercetin (Qu) concentration in the brain for improved therapeutic efficacy. The experimental findings indicate that Men-Qu-Lips exhibited good encapsulation efficiency and stability, successfully crossed the BBB, improved oxidative stress and neuroinflammation in the brains of aged mice, protected neurons, and enhanced their learning and memory abilities.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Encéfalo , Liposomas , Mentol , Quercetina , Quercetina/farmacología , Quercetina/administración & dosificación , Quercetina/química , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Mentol/farmacología , Mentol/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Masculino , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL
14.
Front Immunol ; 15: 1346001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375471

RESUMEN

Background: Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ ALCL) is a rare, mature T-cell non-Hodgkin lymphoma. The prognosis of patients with relapsed or refractory ALCL following first-line chemotherapy is extremely poor. NCCN guidelines recommend intensified chemotherapy with or without ASCT consolidation for r/r ALCL, however, this is not an effective treatment for all ALK+ALCL. Case report: Herein, we report a patient with relapsed/refractory ALK+ ALCL who received crizotinib and brentuximab vedotin as bridging therapy, followed by autologous stem cell transplantation and sequential anti-CD30 CAR T cell therapy. Conclusion: The patient achieved complete remission and long-term disease-free survival of months and continues to be followed up. The combination therapy model in this case may provide guidance for the management of relapsed/refractory ALK+ ALCL, and further prospective trials are needed to confirm its effectiveness.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Linfoma Anaplásico de Células Grandes , Receptores Quiméricos de Antígenos , Humanos , Brentuximab Vedotina/uso terapéutico , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/patología , Crizotinib/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico , Inmunoterapia Adoptiva , Inmunoconjugados/uso terapéutico , Trasplante Autólogo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/genética
15.
Front Oncol ; 14: 1364834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651155

RESUMEN

Introduction: An increasing number of cohort studies have shown a correlation between serum bilirubin and tumors, but no definitive causal relationship has been established between serum bilirubin and hematological malignancies.Therefore, the aim of the present study was to assess the causal relationship of serum bilirubin, including total bilirubin (TBIL) and direct bilirubin (DBIL), with hematological malignancies, including leukemia, lymphoma, and myeloma. Methods: We used a genome-wide association study (GWAS) collection of TBIL, DBIL, and hematological malignancies data. Using two-sample Mendelian randomization(MR), we assessed the impact of TBIL and DBIL on hematological malignancies. For this study, the inverse variance weighting method (IVW) was the primary method of MR analysis. In the sensitivity analysis, the weighted median method, MR Egger regression, and MR-PRESSO test were used. To understand the mechanisms behind TBIL and DBIL, we used three different approaches based on screening single nucleotide polymorphisms (SNPs) and their associated genes, followed by bioinformatics analysis. Results: The IVW test results showed evidence of effects of TBIL (odds ratio [OR]: 4.47, 95% confidence interval [CI]: 1.58-12.62) and DBIL (OR: 3.31, 95% CI: 1.08-10.18) on the risk of acute myeloid leukemia (AML).The findings from bioinformatics indicated that TBIL could potentially undergo xenobiotic metabolism through cytochrome P450 and contribute to chemical carcinogenesis. Discussion: In this study, two-sample MR analysis revealed a causal relationship between TBIL, DBIL, and AML.

16.
Clin Pharmacol Drug Dev ; 13(1): 103-110, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37740592

RESUMEN

Blonanserin is a novel oral antischizophrenic drug. Under fasting (n = 50) and fed (n = 60) conditions, this study compared the bioequivalence of the generic blonanserin tablet with the reference blonanserin tablet. In this single-center, randomized, open-label, 2-period, 2-sequence, crossover study, 110 patients were randomly given a 4-mg dose of either the test or reference blonanserin tablet with a 14-day washout period. Blood samples were taken before performing and up to 72 hours following. A validated high-performance liquid chromatography-tandem mass spectrometry technique was used to measure the levels of blonanserin in plasma. Safety was evaluated throughout the study. The study found no significant differences in the maximum observed drug concentration in the plasma (Cmax ), the area under the plasma concentration-time curve from time 0 to the last sampling time (AUC0-t ), and the area under the plasma concentration-time curve from time 0 to infinity (AUC0-∞ ) between the 2 blonanserin formulations. The 90% confidence intervals of the geometric mean ratio of the test/reference formulations for Cmax , AUC0-t , and AUC0-∞ were within the 80%-125% limit. Food dramatically raised blonanserin exposure, and also significantly prolonged the lag time of absorption. No serious adverse events occurred. These results indicate that the 2 blonanserin formulations were bioequivalent and well tolerated in healthy Chinese subjects. In clinical treatment, it is necessary to consider the food effect of blonanserin.


Asunto(s)
Ayuno , Humanos , Equivalencia Terapéutica , Estudios Cruzados , Comprimidos , China
17.
Sci Total Environ ; 931: 172936, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701923

RESUMEN

Nitrous oxide (N2O) emission from composting is a significant contributor to greenhouse effect and ozone depletion, which poses a threat to environment. To address the challenge of mitigating N2O emission during composting, this study investigated the response of N2O emission and denitrifier communities (detected by metagenome sequencing) to aeration intensities of 6 L/min (C6), 12 L/min (C12), and 18 L/min (C18) in cattle manure composting using multi-factor interaction analysis. Results showed that N2O emission occurred mainly at mesophilic phase. Cumulative N2O emission (QN2O, 9.79 mg·kg-1 DW) and total nitrogen loss (TN loss, 16.40 %) in C12 composting treatment were significantly lower than those in the other two treatments. The lower activity of denitrifying enzymes and the more complex and balanced network of denitrifiers and environmental factors might be responsible for the lower N2O emission. Denitrification was confirmed to be the major pathway for N2O production. Moisture content (MC) and Luteimonas were the key factors affecting N2O emission, and nosZ-carrying denitrifier played a significant role in reducing N2O emission. Although relative abundance of nirS was lower than that of nirK significantly (P < 0.05), nirS was the key gene influencing N2O emission. Community composition of denitrifier varied significantly with different aeration treatments (R2 = 0.931, P = 0.001), and Achromobacter was unique to C12 at mesophilic phase. Physicochemical factors had higher effect on QN2O, whereas denitrifying genes, enzymes and NOX- had lower effect on QN2O in C12. The complex relationship between N2O emission and the related factors could be explained by multi-factor interaction analysis more comprehensively. This study provided a novel understanding of mechanism of N2O emission regulated by aeration intensity in composting.


Asunto(s)
Compostaje , Desnitrificación , Estiércol , Óxido Nitroso , Estiércol/análisis , Óxido Nitroso/análisis , Animales , Compostaje/métodos , Bovinos , Contaminantes Atmosféricos/análisis , Microbiología del Suelo
18.
Sci Total Environ ; 922: 171357, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431167

RESUMEN

Nitrous oxide (N2O) represents a significant environmental challenge as a harmful, long-lived greenhouse gas that contributes to the depletion of stratospheric ozone and exacerbates global anthropogenic greenhouse warming. Composting is considered a promising and economically feasible strategy for the treatment of organic waste. However, recent research indicates that composting is a source of N2O, contributing to atmospheric pollution and greenhouse effect. Consequently, there is a need for the development of effective, cost-efficient methodologies to quantify N2O emissions accurately. In this study, we employed the model-agnostic meta-learning (MAML) method to improve the performance of N2O emissions prediction during manure composting. The highest R2 and lowest root mean squared error (RMSE) values achieved were 0.939 and 18.42 mg d-1, respectively. Five machine learning methods including the backpropagation neural network, extreme learning machine, integrated machine learning method based on ELM and random forest, gradient boosting decision tree, and extreme gradient boosting were adopted for comparison to further demonstrate the effectiveness of the MAML prediction model. Feature analysis showed that moisture content of structure material and ammonium concentration during composting process were the two most significant features affecting N2O emissions. This study serves as proof of the application of MAML during N2O emissions prediction, further giving new insights into the effects of manure material properties and composting process data on N2O emissions. This approach helps determining the strategies for mitigating N2O emissions.

19.
ISA Trans ; 143: 458-476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821310

RESUMEN

The application of virtual inertia (VI) has become a novel solution and new orientation for the frequency regulation of the high variable renewable energy (VRE) penetrated low inertia systems. How to provide a frequency regulation strategy for the system with VI is a key problem. Firstly, the power system is a multi inputs multi outputs (MIMO) system, in which the coupling characteristics of VI control and the primary and secondary frequency controls can't be ignored. Secondly, the system inertia constant is time-varying and the estimation of it is crucial for gaining a satisfying regulation performance. This paper intends to provide a frequency regulation strategy for this problem. In this work, an Elman neural network (ENN) based inertia estimation with a deadband method is proposed for the identification of the system's instant inertia. And the Laguerre function-based rate of change of frequency (ROCOF) constrained MIMO-MPC is constructed to provide the collaboration strategy. Then, the control parameters are tuned by the gravitational search algorithm (GSA) considering both the system performance indexes and the operation burden indexes. The proposed strategy is testified based on a three-area power system. The results prove not only the robustness of the controller but also the effectiveness of the ROCOF constraint, the operation burden index, and the instant inertia estimation method.

20.
Front Oncol ; 13: 1242552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849796

RESUMEN

Background: ALK-negative anaplastic large cell lymphoma (ALK-ALCL) is a rare heterogeneous malignancy of T-cell origin.ALK- ALCL has a poor prognosis, with more patients experiencing relapses and refractory to treatment, and its treatment remains challenging. We report a case with bone involvement as the main clinical manifestation of recurrent, and the patient achieved significant partial remission after brentuximab vedotin(BV) combined with a modified CHEP chemotherapy containing mitoxantrone hydrochloride liposome (PLM60) with the addition of chidamide maintenance therapy and received regular follow-up, with a disease-free survival of 16 months to date. A literature review of the clinical presentation and treatment of ALCL was also conducted to identify strategies for its diagnosis and management. Conclusions: ALK-ALCL with bone involvement as the main manifestation of recurrent is relatively rare. Here, BV combined a modified CHEP chemotherapy containing mitoxantrone hydrochloride liposome was applied for the first time in a patient with relapsed ALK-ALCL, inducing remission and extending survival. However, further prospective studies with many patients are needed to determine the biological characteristics of this rare type of ALK-ALCL and relevant treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA