Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116816, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096685

RESUMEN

Fluoride exposure is widespread worldwide and poses a significant threat to organisms, particularly to their gastrointestinal tracts. However, due to limited knowledge of the mechanism of fluoride induced intestinal injury, it has been challenging to develop an effective treatment. To address this issue, we used a series of molecular biology in vitro and in vivo experiments. NaF triggered m6A mediated ferroptosis to cause intestinal damage. Mechanistically, NaF exposure increased the m6A level of SLC7A11 mRNA, promoted YTHDF2 binding to m6A-modified SLC7A11 mRNA, drove the degradation of SLC7A11 mRNA, and led to a decrease in its protein expression, which eventually triggers ferroptosis. Moreover, NaF aggravated ferroptosis of the colon after antibiotics destroyed the composition of gut microbiota. 16 S rRNA sequencing and SPEC-OCCU plots, Zi-Pi relationships, and Spearman correlation coefficients verified that Lactobacillus murinus (ASV54, ASV58, and ASV82) plays a key role in the response to NaF-induced ferroptosis. Collectively, NaF-induced gut microbiota alteration mediates severe intestinal cell injury by inducing m6A modification-mediated ferroptosis. Our results highlight a key mechanism of the gut in response to NaF exposure and suggest a valuable theoretical basis for its prevention and treatment.

2.
Environ Pollut ; 345: 123416, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278407

RESUMEN

In this study, a soil incubation experiment was conducted to explore the influence MgO-treated corn straw biochar (MCB) on the bioavailability and chemical forms of cadmium (Cd), lead (Pb), and arsenic (As), alongside the impact on the bacterial community within paddy soil subjected to both flooded and non-flooded conditions. Raw corn straw biochar (CB) served as the unmodified biochar control, aiding in the understanding of the biochar's role within the composite. The results showed that even at a minimal concentration of 0.5 %, MCB exhibited higher effectiveness in reducing the bioavailability of Pb and Cd compared to 1 % CB. In non-flooded conditions, 0.5 % MCB reduced the bioavailable Pb and Cd by 99.7 % and 87.4 %, respectively, while NaH2PO4-extracted As displayed a 14.5 % increase. With increasing MCB concentrations (from 0.5 % to 1.5 %), soil pH, DOC, EC, available phosphorus, and bioavailable As increased, while bioavailable Pb and Cd exhibited declining tendencies. Flooding did not notably alter MCB's role in reducing Pb and Cd bioavailability, yet it systematically amplified As release. Heavy metal fractions extracted by acetic acid increased in the MCB groups under flooding conditions, especially for As. The inclusion of 0.5 % MCB did not noticeably affect bacterial diversity, whereas higher doses led to reduced diversity and substantial changes in community composition. Specifically, the groups with MCB showed an increase in the Bacteroidetes and Proteobacteria phyla, accompanied by a decrease in Acidobacteria. These alterations were primarily attributed to the increased pH and EC resulting from MgO hydrolysis. Consequently, for Pb/Cd stabilization and soil bacterial diversity, a low dosage of MgO-treated biochar is recommended. However, caution is advised when employing MgO-treated biochar in soils with elevated arsenic levels, particularly under flooded conditions.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Cadmio/análisis , Óxido de Magnesio , Plomo , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química , Oryza/química
3.
J Hazard Mater ; 476: 135123, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981228

RESUMEN

Understanding the interaction mechanisms between complex heavy metals and soil components is a prerequisite for effectively forecasting the mobility and availability of contaminants in soils. Soil organic matter (SOM), with its diverse functional groups, has long been a focal point of research interest. In this study, four soils with manipulated levels of SOM, cadmium (Cd) and lead (Pb) were subjected to a 90-day incubation experiment. The competitive interactions between Cd and Pb in soils were investigated using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray adsorption near-edge structure (XANES) analysis. Our results indicate that Pb competed with Cd for adsorption sites on the surface of SOM, particularly on carboxyl and hydroxyl functional groups. Approximately 22.6 % of Cd adsorption sites on humus were occupied by Pb. The use of sequentially extracted exchangeable heavy metals as indicators for environment risk assessments, considering variations in soil physico-chemical properties and synergistic or antagonistic effects between contaminants, provides a better estimation of metal bioavailability and its potential impacts. Integrating comprehensive contamination characterization of heavy metal interactions with the soil organic phase is an important advancement to assess the environmental risks of heavy metal dynamics in soil compared to individual contamination assessments.

4.
Sci Total Environ ; 929: 172406, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642745

RESUMEN

Little information is known regarding how the lagged pollution of polycyclic aromatic hydrocarbon (PAH) influenced the environment and human health after an e-waste dismantling site was rebuilt. This study investigated the characteristics, sources, and risk assessment of PAHs in a rebuilt e-waste site and its surrounding farmland by analyzing the samples of soil, dust, water, and vegetable. Concentrations of PAHs in soil, vegetable and water in the rebuilt site were relatively higher than in its surrounding farmland. The concentrations in surface soils, soil columns, dust, vegetables, and water varied from 55.4 to 3990 ng g-1, 1.65 to 5060 ng g-1, 2190 to 2420 ng g-1, 2670 to 10,300 ng g-1, and 46.8 to 110 µg L-1 in the e-waste site, respectively. On the farmland, PAH concentrations in surface soils, vegetables, and water ranged from 41.5 to 2760 ng g-1, 506 to 7640 ng g-1, and 56.6 to 89.2 µg L-1, respectively. A higher proportion of high-molecular-weight PAHs (HMW-PAHs) appeared in all multimedia compared with low-molecular-weight PAHs (LMW-PAHs). Diagnostic ratio together with positive matrix factorization (PMF) revealed that vehicle emission was the primary source in this area, and the activity of e-waste disposal was another important source in the rebuilt e-waste site. Based on the deterministic health risks, people working in the reconstructed e-waste site were exposed to low risks, whereas the residents living near the surrounding farmland were exposed to low risk. Sensitivity analyses indicated that exposure frequency and PAH concentrations were the main factors that influenced exposure risk. This study provides valuable insight into the comprehension of the lagging pollution effects of PAH on the environment and human health after the e-waste site was rebuilt.


Asunto(s)
Residuos Electrónicos , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Residuos Electrónicos/análisis , Contaminantes del Suelo/análisis , Humanos , Suelo/química , China
5.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564334

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Asunto(s)
Caspasa 1 , Infecciones por Escherichia coli , Nucleósido-Difosfato Quinasa , Piroptosis , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/patogenicidad , Animales , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Ratones , Caspasa 1/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Nucleósido-Difosfato Quinasa/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Humanos , Femenino , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transducción de Señal
6.
Gut Microbes ; 16(1): 2316932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356294

RESUMEN

Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.


Asunto(s)
Microbioma Gastrointestinal , Salmonella typhimurium , Animales , Salmonella typhimurium/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Serogrupo , Dinámicas Mitocondriales , Proteínas Bacterianas/metabolismo , Macrófagos/metabolismo , Proliferación Celular
7.
Gut Microbes ; 16(1): 2356642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769708

RESUMEN

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Macrófagos , Macrófagos/microbiología , Animales , Ratones , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biopelículas/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , Humanos , Concentración de Iones de Hidrógeno , Virulencia , Colitis/microbiología , Enfermedad de Crohn/microbiología , Modelos Animales de Enfermedad , Transducción de Señal , Ácidos/metabolismo
8.
Front Chem ; 11: 1328441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38323141

RESUMEN

We have developed an intermolecular aminothiolation of simple olefins using Bunte salt as a thiolating agent. This protocol produces thiyl free radicals under PIDA oxidation conditions, eliminating the need for transition-metal catalysts. The method has a wide range of substrate applicability and is suitable for large-scale preparation and late-stage modification of drug molecules.

9.
Front Microbiol ; 14: 1322910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125573

RESUMEN

Introduction: In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods: In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results: The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion: These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA