Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7869): 718-723, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34082438

RESUMEN

Resistance represents a major challenge for antibody-based therapy for COVID-191-4. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.


Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Inmunoglobulina M/administración & dosificación , Inmunoglobulina M/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Administración Intranasal , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/efectos adversos , Inmunoglobulina M/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ingeniería de Proteínas , Receptores Virales/antagonistas & inhibidores , Receptores Virales/metabolismo , SARS-CoV-2/genética , Tratamiento Farmacológico de COVID-19
2.
Drug Metab Dispos ; 52(7): 673-680, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38658163

RESUMEN

Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We used high-resolution IMS with matrix-assisted laser desorption/ionization to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen. In none of these tissues is duloxetine or its metabolites homogeneously distributed, which has implications for both efficacy and toxicity. We found duloxetine to be similarly distributed in spleen red pulp and white pulp but differentially distributed in different anatomic regions of the liver, kidney, and brain, with dose-dependent patterns. Comparison with hematoxylin and eosin staining of tissue sections reveals that the ion images of endogenous lipids help delineate anatomic regions in the brain and kidney, while heme ion images assist in differentiating regions within the spleen. These endogenous metabolites may serve as a valuable resource for examining the spatial distribution of other drugs in tissues when staining images are not available. These findings may facilitate future mechanistic studies of the therapeutic and adverse effects of duloxetine. In the current work, we did not perform absolute quantification of duloxetine, which will be reported in due course. SIGNIFICANCE STATEMENT: The study utilized imaging mass spectrometry to examine the spatial distribution of duloxetine and its primary metabolites in mouse brain, liver, kidney, and spleen. These results may pave the way for future investigations into the mechanisms behind duloxetine's therapeutic and adverse effects. Furthermore, the mass spectrometry images of specific endogenous metabolites such as heme could be valuable in analyzing the spatial distribution of other drugs within tissues in scenarios where histological staining images are unavailable.


Asunto(s)
Antidepresivos , Encéfalo , Clorhidrato de Duloxetina , Riñón , Hígado , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Bazo , Animales , Clorhidrato de Duloxetina/metabolismo , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Bazo/metabolismo , Bazo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Riñón/metabolismo , Riñón/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Antidepresivos/metabolismo , Distribución Tisular , Masculino , Ratones Endogámicos C57BL
3.
Cell Biol Int ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973665

RESUMEN

Neonatal necrotizing enterocolitis (NEC) is a critical digestive disorder frequently affecting premature infants. Characterized by intestinal inflammation caused by activated M1 macrophages, modulation of macrophage polarization is considered a promising therapeutic strategy for NEC. It has been demonstrated that the growth factor-like protein progranulin (PGRN), which plays roles in a number of physiological and pathological processes, can influence macrophage polarization and exhibit anti-inflammatory characteristics in a number of illnesses. However, its role in NEC is yet to be investigated. Our research showed that the levels of PGRN were markedly elevated in both human and animal models of NEC. PGRN deletion in mice worsens NEC by encouraging M1 polarization of macrophages and escalating intestinal damage and inflammation. Intravenous administration of recombinant PGRN to NEC mice showed significant survival benefits and protective effects, likely due to PGRN's ability to inhibit M1 polarization and reduce the release of pro-inflammatory factors. Our findings shed new light on PGRN's biological role in NEC and demonstrate its potential as a therapeutic target for the disease.

4.
Inorg Chem ; 63(19): 8750-8763, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38693869

RESUMEN

Using a quinoline substituted Qsal ligand, Hqsal-5-Brq (Hqsal-5-Brq = N-(5-bromo-8-quinolyl)salicylaldimine), four FeIII complexes, [Fe(qsal-5-Brq)2]A·CH3OH (Y = NO3- (1NO3), BF4- (2BF4), PF6- (3PF6), OTf- (4OTf), were prepared and characterized. Structure analysis revealed that complex 2BF4 contained two species (2BF4(P1̅) and 2BF4(C2/c)). In these compounds except 3PF6, the [Fe(qsal-5-Brq)2]+ cations form 1D chains through π-π interactions and other weak interactions. Adjacent chains are connected to form the 2D "Chain Layer" structures and 3D structures through various supramolecular interactions. For 3PF6, a "Dimer Chain" structure is formed from the loosely connected dimers. Magnetic studies revealed that compounds 1NO3 and 2BF4(P1̅) displayed abrupt hysteretic SCO with the transition temperature T1/2↓ = 235 K, T1/2↑ = 240 K for 1NO3 and T1/2↓ = 230 K, T1/2↑ = 235 K for 2BF4(P1̅), while compounds 3PF6 and 4OTf are in the HS state. Desolvation of the complexes significantly modifies their SCO properties: the desolvated 1NO3 and 2BF4 show a gradual SCO, desolvated 3PF6 undergoes a two-step SCO, and desolvated 4OTf exhibits a hysteretic transition. Overall, this work reported the FeIII-SCO complexes of the quinoline-substituted Hqsal ligand and highlighted the potential of these ligands for the development of interesting FeIII-SCO materials.

5.
Drug Resist Updat ; 71: 101003, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866104

RESUMEN

Renal cell carcinoma (RCC) is known to be the most commonly diagnosed kidney cancer. Clear cell RCC (ccRCC) represents approximately 85 % of diagnosed RCC cases. Targeted therapeutics, such as multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, are widely used in ccRCC therapy. However, patients treated with mTOR and TKI inhibitors easily acquire drug resistance, making the therapy less effective. Here, we demonstrated that circPTEN inhibits the expression of its parental gene PTEN by reducing methylation of the PTEN promotor and inhibits GLUT1 expression by reducing m6A methylation of GLUT1, which suppresses ccRCC progression and resistance to mTOR inhibitors.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Transportador de Glucosa de Tipo 1 , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Inhibidores mTOR , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Ophthalmic Res ; 67(1): 115-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37989114

RESUMEN

INTRODUCTION: The aim of this study was to explore the association between parental myopia and high myopia with children's refraction and ocular biometry in large-scale Chinese preschool children from the Beijing Hyperopia Reserve Study. SUBJECTS/METHODS: This cross-sectional kindergarten-based study enrolled children aged 3-6 years. Cycloplegic refraction, axial length (AL), and corneal radius (CR) were measured for all children. Parents were asked to complete a questionnaire about refractive status (no myopia, mild myopia <-3 D, moderate myopia ≥-3 D and ≤-6, and high myopia >-6 D). RESULTS: The study enrolled 2,053 children (1,069 boys and 984 girls), with a mean age of 4.26 ± 0.96 years and mean spherical equivalent refraction (SER) of 1.11 ± 0.97 diopter. Of the children, 90.7% had at least one myopic parent, and 511 children (24.9%) had at least one highly myopic parent. SER decreased significantly with increasing severity of parental myopia (p < 0.001). Preschool children's myopia was independently associated with parental myopia (OR, 10.4 and 11.5 for one and two highly myopic parent[s]). Age (OR = 1.1), gender (OR = 1.7; girls as references), near work time (OR = 1.2), and both maternal (OR, 1.4 and 2.0 for moderate and high myopia) and paternal myopia (OR, 1.6 and 1.9 for moderate and high myopia) were independent risk factors for lacking hyperopia reserve. CONCLUSION: Severe parental myopia was associated with a lower SER, longer AL, and higher AL/CR ratio in preschool children. Parental myopia and near work may predispose children to faster elimination of hyperopia reserves before exposure to higher educational stress.


Asunto(s)
Hiperopía , Miopía , Masculino , Femenino , Humanos , Preescolar , Hiperopía/diagnóstico , Estudios Transversales , Miopía/diagnóstico , Refracción Ocular , Padres , Córnea , Biometría
7.
World J Microbiol Biotechnol ; 40(9): 268, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007987

RESUMEN

Bacillus subtilis is a widespread Gram-positive facultative aerobic bacterium that is recognized as generally safe. It has shown significant application value and great development potential in the animal farming industry. As a probiotic, it is frequently used as a feed growth supplement to effectively replace antibiotics due to its favourable effects on regulating the intestinal flora, improving intestinal immunity, inhibiting harmful microorganisms, and secreting bioactive substances. Consequently, the gut health and disease resistance of farmed animals can be improved. Both vegetative and spore forms of B. subtilis have also been utilized as vaccine carriers for delivering the antigens of infectious pathogens for over a decade. Notably, its spore form is regarded as one of the most prospective for displaying heterologous antigens with high activity and stability. Previously published reviews have predominantly focused on the development and applications of B. subtilis spore surface display techniques. However, this review aims to summarize recent studies highlighting the important role of B. subtilis as a probiotic and vaccine carrier in maintaining animal health. Specifically, we focus on the beneficial effects and underlying mechanisms of B. subtilis in enhancing disease resistance among farmed animals as well as its potential application as mucosal vaccine carriers. It is anticipated that B. subtilis will assume an even more prominent role in promoting animal health with in-depth research on its characteristics and genetic manipulation tools.


Asunto(s)
Bacillus subtilis , Probióticos , Probióticos/administración & dosificación , Bacillus subtilis/genética , Animales , Esporas Bacterianas/inmunología , Microbioma Gastrointestinal , Resistencia a la Enfermedad , Vacunas/inmunología
8.
J Antimicrob Chemother ; 78(10): 2435-2441, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37563789

RESUMEN

OBJECTIVES: Aminoglycosides and polymyxins are antibiotics with in vitro activity against MDR Gram-negative bacteria. However, their clinical use is hindered by dose-limiting nephrotoxicity. The objective of this project was to determine if zileuton can reduce nephrotoxicity associated with amikacin and polymyxin B in a rat model of acute kidney injury. METHODS: Sprague Dawley rats (n = 10, both genders) were administered either amikacin (300 mg/kg) or polymyxin B (20 mg/kg) daily for 10 days. Zileuton (4 and 10 mg/kg) was delivered intraperitoneally 15 min before antibiotic administration. Blood samples were collected at baseline and daily to determine serum creatinine concentration. Nephrotoxicity was defined as a ≥2× elevation of baseline serum creatinine. Time-to-event analysis and log rank test were used to compare the onset of nephrotoxicity in different cohorts. Histopathological analysis was also conducted to characterize the extent of kidney injury. RESULTS: Animals receiving amikacin or polymyxin B alone had nephrotoxicity rates of 90% and 100%, respectively. The overall rate was reduced to 30% in animals receiving adjuvant zileuton. The onset of nephrotoxicity associated with amikacin and polymyxin B was also significantly delayed by zileuton at 4 and 10 mg/kg, respectively. Histopathology confirmed reduced kidney injury in animals receiving amikacin concomitant with zileuton. CONCLUSIONS: Our pilot data suggest that zileuton has the potential to attenuate nephrotoxicity associated with last-line antibiotics. This would allow these antibiotics to treat MDR Gram-negative bacterial infections optimally without dose-limiting constraints. Further studies are warranted to optimize drug delivery and dosing in humans.


Asunto(s)
Lesión Renal Aguda , Polimixinas , Humanos , Femenino , Ratas , Masculino , Animales , Polimixinas/efectos adversos , Polimixina B/efectos adversos , Aminoglicósidos , Amicacina/toxicidad , Creatinina , Ratas Sprague-Dawley , Antibacterianos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Riñón/patología , Modelos Animales
9.
Mediators Inflamm ; 2023: 7661791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077671

RESUMEN

Background: Microglia-associated neuroinflammation plays a crucial role in the initiation and development of neuropathic pain (NeuP). AdipoRon is an analog of adiponectin that exerts an anti-inflammatory effect in various diseases through the adiponectin receptor 1 (AdipoR1) signaling mechanism. Adenosine monophosphate-activated protein kinase (AMPK) is a downstream target of AdipoR1, and the AdipoR1/AMPK pathway is involved in the regulation of inflammation. This study is aimed at investigating whether AdipoRon could alleviate NeuP by inhibiting the expression of microglia-derived tumor necrosis factor-alpha (TNF-α) through the AdipoR1/AMPK pathway. Methods: In vivo, the NeuP model was established in mice through the spared nerve injury. The von Frey test was used to detect the effect of AdipoRon on the mechanical paw withdrawal threshold. Western Blot was performed to detect the effects of AdipoRon on the expression of TNF-α, AdipoR1, AMPK, and p-AMPK. Immunofluorescence was performed to observe the effects of AdipoRon on spinal microglia. In vitro, lipopolysaccharide (LPS) was used to induce inflammatory responses in BV2 cells. The effect of AdipoRon on cell proliferation was detected by CCK-8. qPCR was used to examine the effects of AdipoRon on the expression of TNF-α and polarization markers. And the effect of AdipoRon on the AdipoR1/AMPK pathway was confirmed by Western Blot. Results: Intraperitoneal injection of AdipoRon alleviated mechanical nociception in SNI mice, and the application of AdipoRon reduced the expression of TNF-α and the number of microglia in the ipsilateral spinal cord. Additionally, AdipoRon decreased the protein level of AdipoR1 and increased the protein level of p-AMPK in the ipsilateral spinal cord. In vitro, AdipoRon inhibited BV2 cell proliferation and reversed LPS-induced TNF-α expression and polarization imbalance. Furthermore, AdipoRon reversed the LPS-induced increase in AdipoR1 expression and decrease in p-AMPK expression in BV2 cells. Conclusions: AdipoRon may alleviate NeuP by reducing microglia-derived TNF-α through the AdipoR1/AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Factor de Necrosis Tumoral alfa , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Microglía/metabolismo , Lipopolisacáridos/farmacología
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 809-817, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249332

RESUMEN

ING5 belongs to the inhibitor of growth (ING) candidate tumor suppressor family, which is involved in multiple cellular functions, such as cell cycle regulation, apoptosis, and chromatin remodelling. Previously, we reported that ING5 overexpression inhibits EMT by regulating EMT-related molecules, including Snail1, at the mRNA and protein levels. However, the mechanisms remain unclear. In the current study, we identify that ING5 overexpression induces the upregulation of miR-34c-5p. The expression levels of both ING5 and miR-34c-5p in NSCLC tissues from the TCGA database are decreased compared with that in adjacent tissues. Higher expression levels of both ING5 and miR-34c-5p predict longer overall survival (OS). Snail1 is the target gene of miR-34c-5p, as predicted by an online database, which is further verified by a dual-luciferase reporter assay. The expression level of Snail1 in NSCLC cells is markedly reduced following miR-34c-5p overexpression, leading to the inactivation of the Snail1 downstream TGF-ß/Smad3 signaling pathway. The TGF-ß signaling-specific inhibitor LY2157299 reverses the enhanced EMT, proliferation, migration, and invasion abilities induced by the miR-34c-5p inhibitor. Furthermore, tail vein injection of miR-34c-5p agomir inhibits xenografted tumor metastasis. Overall, this study concludes that miR-34c-5p, induced by ING5 overexpression, is a tumor suppressor that targets Snail1 and mediates the inhibitory effects of ING5 on the EMT and invasion of NSCLC cells. These results provide a novel mechanism mediating the antitumor effects of ING5.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
11.
Semin Cancer Biol ; 68: 175-185, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874280

RESUMEN

Amino-bisphosphonates (N-BPs) have been commercially available for over four decades and are used for the treatment of osteoporosis, Paget's disease, hypercalcemia of malignancy, and bone metastases derived from various cancer types. Zoledronate and alendronate, two of the most potent N-BPs, have demonstrated direct tumoricidal activity on tumor cells and immune modulatory effects on myeloid cells and T cells in vitro and in animal models of cancer. However, the rapid renal clearance and sequestration in mineral bone of these drugs in free form severely limit their systemic exposure and applications in cancer patients. Reformulation of N-BPs by encapsulation in liposomal nanoparticles addresses these pharmacokinetic barriers, and liposomal zoledronate and alendronate formulations have been found to increase the anticancer efficacy of cytotoxic chemotherapies and adoptive T cell immunotherapies in murine cancer models. Herein, we review the differences in pharmacology between N-BPs versus non-N-BPs (e.g., clodronate), free versus liposomal N-BP formulations, and targeted versus non-targeted liposomal N-BPs, and the clinical and preclinical evidence supporting a role for liposomal N-BPs in the treatment of cancer. We propose that pegylated liposomal alendronate (PLA) has the most potential for clinical translation based on favorable therapeutic index, ability to passively target and accumulate in tumors, proven biocompatibility of the liposome carrier, and preclinical anticancer efficacy.


Asunto(s)
Antineoplásicos/uso terapéutico , Difosfonatos/uso terapéutico , Composición de Medicamentos/métodos , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Liposomas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Difosfonatos/química , Humanos , Liposomas/química
12.
Langmuir ; 38(26): 8012-8020, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35715215

RESUMEN

Ca2+ overload has attracted an increasing attention due to its benefit of precise cancer therapy, but its efficacy is limited by the strong Ca2+ excretion of cancer cells. Moreover, monotherapy of Ca2+ overload usually fails to treat tumors satisfactorily. Herein, we develop a multifunctional nanosystem that could induce Ca2+ overload by multipathway and simultaneously produce chemotherapy for synergistic tumor therapy. The nanosystem (CaMSN@CUR) is prepared by synthesizing a Ca-doped mesoporous silica nanoparticle (CaMSN) followed by loading the anticancer drug curcumin (CUR). CaMSN serves as the basis Ca2+ generator to induce Ca2+ overload directly in the intracellular environment by acid-triggered Ca2+ release, while CUR could not only exhibit chemotherapy but also facilitate Ca2+ release from the endoplasmic reticulum to the cytoplasm and inhibit Ca2+ efflux out of cells to further enhance Ca2+ overload. The in vitro and in vivo results show that CaMSN@CUR could exhibit a remarkable cytotoxicity against 4T1 cells and significantly inhibit tumor growth in 4T1 tumor-bearing mice via the synergy of Ca2+ overload and CUR-mediated chemotherapy. It is expected that the designed CaMSN@CUR has a great potential for effective tumor therapy.


Asunto(s)
Antineoplásicos , Curcumina , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Curcumina/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ratones , Dióxido de Silicio
13.
Analyst ; 147(11): 2500-2507, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35537204

RESUMEN

A simple aptazyme-induced cascade signal amplification (denoted as ACSA) was integrated with a triple-channel volumetric bar-chart chip (TV-Chip) to visually quantitate aflatoxin B1 (AFB1) and adenosine triphosphate (ATP). Bifunctional aptazymes consisting of aptamers and G-quadruplex-forming sequences were modified on magnetic silica nanoparticles (MSNPs) to construct sensing probes. The recognition of aptamers and targets leads to the formation of hemin/G-quadruplex (hGQ) DNAzymes, which can mimic the horseradish peroxidase (HRP)-accelerated signal enhancement reaction, enabling the polymerization of dopamine and subsequent deposition of polydopamine (PDA) on the MSNP probes, thereby providing abundant anchor sites to covalently immobilize numerous 4-mercaptophenylboric acid (4-MPBA)-modified platinum nanoparticles (PtNPs) (MPt). As a result, this strategy possesses high sensitivity by introducing a large number of PtNPs into the TV-Chip. The detection limits of AFB1 and ATP with 0.075 pM and 0.818 pM, respectively, were easily achieved without any additional instruments. In addition, the detection results of AFB1-spiked food samples were in good agreement with the commercial AFB1 ELISA kit, which verified the accuracy and reliability of this method. The ACSA-based TV-Chip would show great promise for on-site and real-time visual quantitation of trace targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Adenosina Trifosfato/análisis , Aflatoxina B1/análisis , Límite de Detección , Platino (Metal) , Reproducibilidad de los Resultados
14.
Clin Exp Pharmacol Physiol ; 49(12): 1307-1318, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35986631

RESUMEN

The aim of this work was to study the effect and mechanism of ß-carotene on insulin resistance and glucose transport in gestational diabetes mellitus (GDM). Placental tissue and venous blood of 26 GDM patients and 18 normal women were collected. Mice fed a high-fat diet were established as GDM models and treated with ß-carotene, from which peripheral blood and placenta tissue were collected. HTR-8/SVneo cells were treated with 10-7  mol/L insulin for 48 h and established as insulin resistance cell models. The expression of SHBG, GLUT1, GLUT3, GLUT4, IRS-1, IRS-2, PI3Kp85α, and p-CREB/CREB in placental tissues and HTR-8/SVneo cells was detected. Insulin resistance index was calculated from the values of fasting blood glucose and fasting insulin. The glucose consumption of insulin-resistant cells was calculated by detecting the glucose content of the supernatant. The cyclic adenosine monophosphate (cAMP) kit was applied to measure the concentration of cAMP in cells. SHBG was lowly expressed in GDM. ß-Carotene treatment upregulated SHBG in the placenta of GDM mice and in insulin-resistant HTR-8/SVneo cells. Overexpression of SHBG upregulated GLUT3, GLUT4, and IRS-1 and enhanced glucose consumption in insulin-resistant cells. ß-Carotene treatment promoted the expression of SHBG, GLUT4 and IRS-1 and increased glucose consumption in insulin-resistant cells underexpressing SHBG. Silencing of SHBG decreased the levels of cAMP and pCREB/CREB but ß-carotene treatment increased their expression despite SHBG silencing in insulin-resistant cells. ß-Carotene promotes glucose transport and inhibits insulin resistance in GDM by increasing the expression of SHBG.


Asunto(s)
Diabetes Gestacional , Resistencia a la Insulina , Globulina de Unión a Hormona Sexual , beta Caroteno , Animales , Femenino , Humanos , Ratones , Embarazo , beta Caroteno/farmacología , Diabetes Gestacional/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Placenta/metabolismo , Globulina de Unión a Hormona Sexual/genética
15.
Gynecol Endocrinol ; 38(1): 94-96, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34477017

RESUMEN

Multiple endocrine neoplasia type 1 (MEN 1) is a rare hereditary disease which transmitted as autosomal dominant disorder with high penetrance. MEN1 includes vary combinations of more than 20 endocrine and non-endocrine tumors. Clinically, MEN1 is characterized by tumor or hyperplasia in two or more endocrine tissues (parathyroid, pituitary, pancreas, adrenal glands). Since it is a rare condition, there are no guidelines with respect to the follow-up of pregnant women with MEN 1, here we the first Asian case of a 32-year-old primigravida with a confirmed diagnosis of MEN1 and primary hypertension prior to conception, cesarean section was performed at 34+2 weeks for severe preeclampsia and potential risks, both the patient and fetus recovered well.


Asunto(s)
Hipertensión/complicaciones , Neoplasia Endocrina Múltiple Tipo 1/complicaciones , Complicaciones del Embarazo/terapia , Adulto , Cesárea , Femenino , Edad Gestacional , Humanos , Hipertensión/terapia , Neoplasia Endocrina Múltiple Tipo 1/terapia , Preeclampsia/cirugía , Embarazo
16.
Nano Lett ; 21(5): 2001-2009, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33591201

RESUMEN

Small extracellular vesicles (sEVs) are increasingly recognized as noninvasive diagnostic markers for many diseases. Hence, it is highly desirable to isolate sEVs rapidly for downstream molecular analyses. However, conventional methods for sEV isolation (such as ultracentrifugation and immune-based isolation) are time-consuming and expensive and require large sample volumes. Herein, we developed artificial magnetic colloid antibodies (MCAs) via surface imprinting technology for rapid isolation and analysis of sEVs. This approach enabled the rapid, purification-free, and low-cost isolation of sEVs based on size and shape recognition. The MCAs presented a higher capture yield in 20 min with more than 3-fold enrichment of sEVs compared with the ultracentrifugation method in 4 h. Moreover, the MCAs also proposed a reusability benefiting from the high stability of the organosilica recognition layer. By combining with volumetric bar-chart chip technology, this work provides a sensitive, rapid, and easy-to-use sEV detection platform for point-of-care (POC) diagnostics.


Asunto(s)
Vesículas Extracelulares , Anticuerpos , Coloides , Fenómenos Magnéticos , Pruebas en el Punto de Atención
17.
Angew Chem Int Ed Engl ; 61(14): e202114239, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080112

RESUMEN

Cancer has become a leading cause of morbidity and mortality, and there is an increasing need for versatile tools to enable sensitive, simple and early cancer monitoring. Here, we report platinum supernanoparticles as an exogenous nanosensor which can dissociate into ultrasmall platinum nanoclusters (PtNCs) under tumor-specific hypoxia conditions. The resulting PtNCs can be filtered through the kidney as urinary reporters to be quantified by a companion volumetric bar-chart chip (V-Chip) for point-of-care analysis. The V-Chip signals of triple-negative breast cancer and its lung metastasis mouse model showed a significant increase compared to healthy mice. Our nanosensor can also noninvasively monitor the course of treatment, which is significant for screening tumor recurrence and individualized evaluation of pharmacological and follow-up efficacy. Importantly, this strategy could be adapted for various diseases to form a common diagnostic platform by changing responsive linkers.


Asunto(s)
Neoplasias Pulmonares , Platino (Metal) , Animales , Hipoxia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Microfluídica , Sistemas de Atención de Punto
18.
Artículo en Inglés | MEDLINE | ID: mdl-33361306

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause developmental disorders following congenital infection and life-threatening complications among transplant patients. Potent neutralizing monoclonal antibodies (MAbs) are promising drug candidates against HCMV infection. HCMV can infect a broad range of cell types. Therefore, single neutralizing antibodies targeting one HCMV glycoprotein often lack either potency or broad cell-type coverage. We previously characterized two human-derived HCMV neutralizing MAbs. One was the broadly neutralizing MAb 3-25, which targets the antigenic domain 2 of glycoprotein B (gB). The other was the highly potent MAb 2-18, which specifically recognizes the gH/gL/pUL128/130/131 complex (pentamer). To combine the strengths of gB- and pentamer-targeting MAbs, we developed an IgG-single-chain variable fragment (scFv) bispecific antibody by fusing the 2-18 scFv to the heavy-chain C terminus of MAb 3-25. The resulting bispecific antibody showed high-affinity binding to both gB and pentamer. Functionally, the bispecific antibody demonstrated a combined neutralization breadth and potency of the parental MAbs in multiple cell lines and inhibited postinfection viral spreading. Furthermore, the bispecific antibody was easily produced in CHO cells at a yield above 1 g/liter and showed a single-dose pharmacokinetic profile comparable to that of parental MAb 3-25 in rhesus macaques. Importantly, the bispecific antibody retained broadly and potent neutralizing activity after 21 days in circulation. Taken together, our research provides a proof-of-concept study for developing bispecific neutralizing antibody therapies against HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Cricetinae , Cricetulus , Glicoproteínas , Humanos , Macaca mulatta , Proteínas del Envoltorio Viral
19.
Mol Carcinog ; 60(8): 538-555, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062009

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Some microRNAs (miRNAs) were abnormally expressed in TNBC, and they are closely related to the occurrence and progression of TNBC. Here, we found that miR-506 was significantly downregulated in TNBC and relatively lower miR-506 expression predicted a poorer prognosis. Moreover, we found that miR-506 could inhibit MDA-MB-231 cell viability, colony formation, migration, and invasion, and suppress the ERK/Fos oncogenic signaling pathway through upregulating its direct target protein proenkephalin (PENK). Therefore, miR-506 was proposed as a nucleic acid drug for TNBC therapy. However, miRNA is unstable in vivo, which limiting its application as a therapeutic drug via conventional oral or injected therapies. Here, a gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA. Exogenous miR-506 mimic was loaded on GNs and injected into the in situ TNBC animal model, and the miR-506 could achieve sustained and controlled release. The results confirmed that overexpression of miR-506 and PENK in vivo through loading on GNs inhibited in situ triple-negative breast tumor growth and metastasis significantly in the xenograft model. Moreover, we indicated that the ERK/Fos signaling pathway was intensively inactivated after overexpression of miR-506 and PENK both in vitro and in vivo, which was further validated by the ERK1/2-specific inhibitor SCH772984. In conclusion, this study demonstrates that miR-506-loaded GNs have great potential in anti-TNBC aggressiveness therapy.


Asunto(s)
Encefalinas/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Precursores de Proteínas/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Gelatina , Técnicas de Transferencia de Gen , Humanos , Ratones , MicroARNs/administración & dosificación , Nanosferas , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Opt Express ; 29(18): 29329-29340, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34615044

RESUMEN

Spectral fitting method (SFM) was proposed to obtain the refractive index (RI) and thickness of chalcogenide films based on transmission spectra. It extended the Swanepoel method to the films on the order of hundreds of nanometers in thickness. The RI and thickness of the films can be obtained quickly and accurately by using the SFM based on the transmission spectrum with only one peak and valley. The method's reliability theoretically was evaluated by simulation analysis. The results showed that the accuracy of the RI and thickness was better than 0.2% by using the SFM regardless of thin or thick film. Finally, the RI and thickness of the new ultralow loss reversible phase-change material Sb2Se3 films were obtained experimentally by the SFM. This work should provide a useful guideline for obtaining the RI and thickness of the transparent optical films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA