Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(22): e2201719, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35506200

RESUMEN

Na3 V2 (PO4 )2 F3 has attracted wide attention due to its high voltage platform, and stable crystal structure. However, its application is limited by the low electronic conductivity and the ease formation of impurity. In this paper, the spherical Br-doped Na3 V2 (PO4 )2 F3 /C is successfully obtained by a one-step spray drying technology. The hard template polytetrafluoroethylene (PTFE) supplements the loss of fluorine, forming porous structure that accelerates the infiltration of electrolyte. The soft template cetyltrimethylammonium bromide (CTAB) enables doping of bromine and can also control the fluorine content, meanwhile, the self-assembly effect strengthens the structure and refines the size of spherical particles. The loss, compensation, and regulation mechanism of fluorine are investigated. The Br-doped Na3 V2 (PO4 )2 F3 /C sphere exhibits superior rate capability with the capacities of 116.1, 105.1, and 95.2 mAh g-1 at 1, 10, and 30 C, and excellent cyclic performance with 98.3% capacity retention after 1000 cycles at 10 C. The density functional theory (DFT) calculation shows weakened charge localization and enhanced conductivity, meanwhile the diffusion energy barrier of sodium ions is reduced with Br doping. This paper proposes a strategy to construct fluorine-containing polyanions cathode, which enables the precise regulation of structure and morphology, thus leading to superior electrochemical performance.

2.
Nano Lett ; 21(16): 6907-6913, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34369776

RESUMEN

Electrochemical CO2 reduction provides a promising strategy to product value-added fuels and chemical feedstocks. However, it remains a grand challenge to further reduce the overpotentials and increase current density for large-scale applications. Here, spontaneously Sn doped Bi/BiOx nanowires (denoted as Bi/Bi(Sn)Ox NWs) with a core-shell structure were synthesized by an electrochemical dealloying strategy. The Bi/Bi(Sn)Ox NWs exhibit impressive formate selectivity over 92% from -0.5 to -0.9 V versus reversible hydrogen electrode (RHE) and achieve a current density of 301.4 mA cm-2 at -1.0 V vs RHE. In-situ Raman spectroscopy and theoretical calculations reveal that the introduction of Sn atoms into BiOx species can promote the stabilization of the *OCHO intermediate on the Bi(Sn)Ox surface and suppress the competitive H2/CO production. This work provides effective in situ construction of the metal/metal oxide hybrid composites with heteroatom doping and new insights in promoting electrochemical CO2 conversion into formate for practical applications.

3.
Phys Chem Chem Phys ; 21(9): 4802-4809, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30773579

RESUMEN

We present an atomistic simulation study on the compositional arrangements throughout Cu-Pt icosahedra, with a specific focus on the effects of inherent strain on general segregation trends. The coexistence of radial and site-selective segregation patterns is found in bimetallic nanoparticles for a broad range of sizes and compositions, consistent with prior analytical and atomistic models. Through a thorough comparison between the composition patterns and strain-related patterns, it is suggested that the presence of gradient and site-selective segregation is natural to largely relieve the inherent strain by preferential segregation of big atoms at tensile sites and vice versa, as previously hypothesized in the literature. Analogous to the case of single crystal particles, Cu-rich surface and damped oscillations can also be found in the outer shells of icosahedra, which are dominated by the lowering of both the surface energy and the chemical energy. The thermodynamic stability of segregated icosahedra is similar to segregated cuboctahedra but higher than disordered bulk alloys, validating prior thinking that element segregation driven by strain relief can extend the stability range of multiply-twinned nanoparticles. Our work sheds new light on understanding strain-induced segregation in multiply-twinned nanosystems that have elements with large lattice mismatch and strong alloying ability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA