Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.508
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(12): 6850-6865, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38726870

RESUMEN

The ZFX transcriptional activator binds to CpG island promoters, with a major peak at ∼200-250 bp downstream from transcription start sites. Because ZFX binds within the transcribed region, we investigated whether it regulates transcriptional elongation. We used GRO-seq to show that loss or reduction of ZFX increased Pol2 pausing at ZFX-regulated promoters. To further investigate the mechanisms by which ZFX regulates transcription, we determined regions of the protein needed for transactivation and for recruitment to the chromatin. Interestingly, although ZFX has 13 grouped zinc fingers, deletion of the first 11 fingers produces a protein that can still bind to chromatin and activate transcription. We next used TurboID-MS to detect ZFX-interacting proteins, identifying ZNF593, as well as proteins that interact with the N-terminal transactivation domain (which included histone modifying proteins), and proteins that interact with ZFX when it is bound to the chromatin (which included TAFs and other histone modifying proteins). Our studies support a model in which ZFX enhances elongation at target promoters by recruiting H4 acetylation complexes and reducing pausing.


Asunto(s)
Cromatina , Histonas , Regiones Promotoras Genéticas , Acetilación , Histonas/metabolismo , Humanos , Cromatina/metabolismo , ARN Polimerasa II/metabolismo , Dedos de Zinc , Unión Proteica , Activación Transcripcional , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Islas de CpG , Animales
2.
Plant J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924231

RESUMEN

Due to the chelation of phosphorus in the soil, it becomes unavailable for plant growth and development. The mechanisms by which phosphorus-solubilizing bacteria activate immobilized phosphorus to promote the growth and development of woody plants, as well as the intrinsic molecular mechanisms, are not clear. Through the analysis of microbial communities in the rhizosphere 16S V3-V4 and a homologous gene encoding microbial alkaline phosphomonoesterase (phoD) in phosphate-efficient (PE) and phosphate-inefficient apple rootstocks, it was found that PE significantly enriched beneficial rhizobacteria. The best phosphorus-solubilizing bacteria, Bacillus sp. strain 7DB1 (B2), was isolated, purified, and identified from the rhizosphere soil of PE rootstocks. Incubating with Bacillus B2 into the rhizosphere of apple rootstocks significantly increased the soluble phosphorus and flavonoid content in the rhizosphere soil. Simultaneously, this process stimulates the root development of the rootstocks and enhances plant phosphorus uptake. After root transcriptome sequencing, candidate transcription factor MhMYB15, responsive to Bacillus B2, was identified through heatmap and co-expression network analysis. Yeast one-hybrid, electrophoretic mobility shift assay, and LUC assay confirmed that MhMYB15 can directly bind to the promoter regions of downstream functional genes, including chalcone synthase MhCHS2 and phosphate transporter MhPHT1;15. Transgenic experiments with MhMYB15 revealed that RNAi-MhMYB15 silenced lines failed to induce an increase in flavonoid content and phosphorus levels in the roots under the treatment of Bacillus B2, and plant growth was slower than the control. In conclusion, MhMYB15 actively responds to Bacillus B2, regulating the accumulation of flavonoids and the uptake of phosphorus, thereby influencing plant growth and development.

3.
Plant J ; 118(6): 2108-2123, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526880

RESUMEN

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.


Asunto(s)
Genes de Plantas , Oryza , Fitomejoramiento , Proteínas de Plantas , Alelos , Genotipo , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Fenotipo , Fotoperiodo , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
N Engl J Med ; 386(21): 1998-2010, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35613022

RESUMEN

BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Asunto(s)
Antineoplásicos , Desmetilación , Síndromes Mielodisplásicos , Oncogenes , Regulación hacia Arriba , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desmetilación/efectos de los fármacos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes/efectos de los fármacos , Oncogenes/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Exp Cell Res ; 439(2): 114099, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38802035

RESUMEN

Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana , MicroARNs , Neoplasias Gástricas , Linfocitos T Citotóxicos , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral/genética
6.
Nature ; 572(7769): 387-391, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31330531

RESUMEN

The bacterial pathogen Legionella pneumophila creates an intracellular niche permissive for its replication by extensively modulating host-cell functions using hundreds of effector proteins delivered by its Dot/Icm secretion system1. Among these, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism that bypasses the canonical ubiquitination machinery2-4. The activity of SidEs is regulated by another Dot/Icm effector known as SidJ5; however, the mechanism of this regulation is not completely understood6,7. Here we demonstrate that SidJ inhibits the activity of SidEs by inducing the covalent attachment of glutamate moieties to SdeA-a member of the SidE family-at E860, one of the catalytic residues that is required for the mono-ADP-ribosyltransferase activity involved in ubiquitin activation2. This inhibition by SidJ is spatially restricted in host cells because its activity requires the eukaryote-specific protein calmodulin (CaM). We solved a structure of SidJ-CaM in complex with AMP and found that the ATP used in this reaction is cleaved at the α-phosphate position by SidJ, which-in the absence of glutamate or modifiable SdeA-undergoes self-AMPylation. Our results reveal a mechanism of regulation in bacterial pathogenicity in which a glutamylation reaction that inhibits the activity of virulence factors is activated by host-factor-dependent acyl-adenylation.


Asunto(s)
Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Legionella pneumophila/enzimología , Legionella pneumophila/metabolismo , Ubiquitinación , ADP-Ribosilación , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Coenzimas/metabolismo , Células HEK293 , Humanos , Legionella pneumophila/citología , Modelos Moleculares , Ubiquitina/química , Ubiquitina/metabolismo
7.
Cell Mol Life Sci ; 81(1): 289, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970696

RESUMEN

Congenital human cytomegalovirus (HCMV) infection is a major cause of abnormalities and disorders in the central nervous system (CNS) and/or the peripheral nervous system (PNS). However, the complete pathogenesis of neural differentiation disorders caused by HCMV infection remains to be fully elucidated. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells (MSCs) with a high proliferation and neurogenic differentiation capacity. Since SHEDs originate from the neural crest of the early embryonic ectoderm, SHEDs were hypothesized to serve as a promising cell line for investigating the pathogenesis of neural differentiation disorders in the PNS caused by congenital HCMV infection. In this work, SHEDs were demonstrated to be fully permissive to HCMV infection and the virus was able to complete its life cycle in SHEDs. Under neurogenic inductive conditions, HCMV infection of SHEDs caused an abnormal neural morphology. The expression of stem/neural cell markers was also disturbed by HCMV infection. The impairment of neural differentiation was mainly due to a reduction of intracellular cholesterol levels caused by HCMV infection. Sterol regulatory element binding protein-2 (SREBP2) is a critical transcription regulator that guides cholesterol synthesis. HCMV infection was shown to hinder the migration of SREBP2 into nucleus and resulted in perinuclear aggregations of SREBP2 during neural differentiation. Our findings provide new insights into the prevention and treatment of nervous system diseases caused by congenital HCMV infection.


Asunto(s)
Diferenciación Celular , Colesterol , Infecciones por Citomegalovirus , Citomegalovirus , Células Madre Mesenquimatosas , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Humanos , Colesterol/metabolismo , Colesterol/biosíntesis , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Citomegalovirus/fisiología , Citomegalovirus/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/virología , Células Madre Mesenquimatosas/citología , Células Cultivadas , Diente Primario/virología , Diente Primario/citología , Diente Primario/metabolismo , Neuronas/metabolismo , Neuronas/virología , Neurogénesis
8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086932

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) has become a powerful tool for biomedical research by providing a variety of valuable information with the advancement of computational tools. Lineage analysis based on scRNA-seq provides key insights into the fate of individual cells in various systems. However, such analysis is limited by several technical challenges. On top of the considerable computational expertise and resources, these analyses also require specific types of matching data such as exogenous barcode information or bulk assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) data. To overcome these technical challenges, we developed a user-friendly computational algorithm called "LINEAGE" (label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis). Aiming to screen out endogenous markers of lineage located on mitochondrial reads from label-free scRNA-seq data to conduct lineage inference, LINEAGE integrates a marker selection strategy by feature subspace separation and de novo "low cross-entropy subspaces" identification. In this process, the mutation type and subspace-subspace "cross-entropy" of features were both taken into consideration. LINEAGE outperformed three other methods, which were designed for similar tasks as testified with two standard datasets in terms of biological accuracy and computational efficiency. Applied on a label-free scRNA-seq dataset of BRAF-mutated cancer cells, LINEAGE also revealed genes that contribute to BRAF inhibitor resistance. LINEAGE removes most of the technical hurdles of lineage analysis, which will remarkably accelerate the discovery of the important genes or cell-lineage clusters from scRNA-seq data.


Asunto(s)
Linaje de la Célula/genética , ARN Mitocondrial/genética , Análisis de Secuencia de ARN/métodos , Algoritmos , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , ARN/análisis , Análisis de la Célula Individual/métodos , Secuenciación del Exoma/métodos
9.
Nano Lett ; 24(7): 2157-2164, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319745

RESUMEN

Carbon support is essential for electrocatalysis, but limitations remain, as carbon corrosion can lead to electrocatalyst degradation and affect the long-term durability of electrocatalysts. Here, we studied the corrosion dynamics of carbon nanotubes (CNTs) and Vulcan carbon (VC) together with platinum (Pt) nanoparticles in real time by liquid cell (LC) transmission electron microscopy (TEM). The results showed that CNTs with a high degree of graphitization exhibited higher corrosion resistance compared to VC. Furthermore, we observed that the main degradation path of Pt nanoparticles in Pt/CNTs was ripening, while in Pt/VC, it was aggregation and coalescence, which was dominated by the interactions between Pt nanoparticles and different hybridization of carbon supports. Finally, we performed an ex situ CV stability test to confirm the conclusions obtained from in situ experiments. This work provides deep insights into the corrosion mechanism of carbon-supported electrocatalysts to optimize the design of electrocatalysts with a higher durability.

10.
Lancet Oncol ; 25(1): 117-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092009

RESUMEN

BACKGROUND: Golidocitinib, a selective JAK1 tyrosine-kinase inhibitor, has shown encouraging anti-tumour activity in heavily pre-treated patients with relapsed or refractory peripheral T-cell lymphoma in a phase 1 study (JACKPOT8 Part A). Here, we report the full analysis of a phase 2 study, in which we assessed the anti-tumour activity of golidocitinib in a large multinational cohort of patients. METHODS: We did a single-arm, multinational, phase 2 trial (JACKPOT8 Part B) in 49 centres in Australia, China, South Korea, and the USA. Eligible patients were adults (aged ≥18 years) with relapsed or refractory peripheral T-cell lymphoma who had received at least one previous line of systemic therapy and an Eastern Cooperative Oncology Group performance status of 0-2. Patients were given oral golidocitinib 150 mg once daily until disease progression or other discontinuation criteria were met. The primary endpoint was the CT-based objective response rate, assessed by an independent review committee (IRC) per Lugano 2014 classification. The activity analysis set included all patients who received at least one dose and whose pathological diagnosis of peripheral T-cell lymphoma had been retrospectively confirmed by a central laboratory and who had at least one measurable lesion at baseline assessed by IRC. The safety analysis set included all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, NCT04105010, and is closed to accrual and follow-up is ongoing. FINDINGS: Between Feb 26, 2021, and Oct 12, 2022, we assessed 161 patients for eligibility, of whom 104 (65%) were enrolled and received at least one dose of study drug; the activity analysis set included 88 (85%) patients (median age 58 years [IQR 51-67], 57 [65%] of 88 were male, 31 [35%] were female, and 83 [94%] were Asian). As of data cutoff (Aug 31, 2023; median follow-up was 13·3 months [IQR 4·9-18·4]), per IRC assessment, the objective response rate was 44·3% (95% CI 33·7-55·3; 39 of 88 patients, p<0·0001), with 21 (24%) patients having a complete response and 18 (20%) having a partial response. In the safety analysis set, 61 (59%) of 104 patients had grade 3-4 drug-related treatment-emergent adverse events. The most common grade 3-4 drug-related treatment-emergent adverse events were neutrophil count decreased (30 [29%]), white blood cell count decreased (27 [26%]), lymphocyte count decreased (22 [21%]), and platelet count decreased (21 [20%]), which were clinically manageable and reversible. 25 (24%) patients had treatment-related serious adverse events. Deaths due to treatment-emergent adverse events occurred in three (3%) patients: two (2%) due to pneumonia (one case with fungal infection [related to golidocitinib] and another one with COVID-19 infection) and one (1%) due to confusional state. INTERPRETATION: In this phase 2 study, golidocitinib showed a favourable benefit-risk profile in treating relapsed or refractory peripheral T-cell lymphoma. The results of this study warrant further randomised clinical studies to confirm activity and assess efficacy in this population. FUNDING: Dizal Pharmaceutical.


Asunto(s)
Linfoma de Células T Periférico , Adulto , Humanos , Masculino , Femenino , Adolescente , Persona de Mediana Edad , Linfoma de Células T Periférico/tratamiento farmacológico , Estudios Retrospectivos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Progresión de la Enfermedad , Janus Quinasa 1/genética , Tirosina/uso terapéutico
11.
J Cell Mol Med ; 28(11): e18484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842124

RESUMEN

As an important protein encoded by hepatitis B virus (HBV), HBV X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). It has been shown that seven in absentia homologue 1 (SIAH1) could regulates the degradation of HBx through the ubiquitin-proteasome pathway. However, as a member of SIAH family, the regulatory effects of SIAH2 on HBx remain unclear. In this study, we first confirmed that SIAH2 could reduce the protein levels of HBx depending on its E3 ligase activity. Moreover, SIAH2 interacted with HBx and induced its K48-linked polyubiquitination and proteasomal degradation. Furthermore, we provided evidence that SIAH2 inhibits HBx-associated HCC cells proliferation by regulating HBx. In conclusion, our study identified a novel role for SIAH2 in promoting HBx degradation and SIAH2 exerts an inhibitory effect in the proliferation of HBx-associated HCC through inducing the degradation of HBx. Our study provides a new idea for the targeted degradation of HBx and may have great huge significance into providing novel evidence for the targeted therapy of HBV-infected HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Virus de la Hepatitis B , Neoplasias Hepáticas , Proteínas Nucleares , Proteolisis , Transactivadores , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales , Humanos , Proteínas Reguladoras y Accesorias Virales/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Transactivadores/metabolismo , Transactivadores/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Línea Celular Tumoral , Transducción de Señal , Células Hep G2
12.
J Cell Mol Med ; 28(3): e18114, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323741

RESUMEN

Patients with Philadelphia chromosome-like acute lymphoblastic leukaemia (Ph-like ALL) often face a grim prognosis, with PDGFRB gene fusions being commonly detected in this subgroup. Our study has unveiled a newfound fusion gene, TERF2::PDGFRB, and we have found that patients carrying this fusion gene exhibit sensitivity to dasatinib. Ba/F3 cells harbouring the TERF2::PDGFRB fusion display IL-3-independent cell proliferation through activation of the p-PDGFRB and p-STAT5 signalling pathways. These cells exhibit reduced apoptosis and demonstrate sensitivity to imatinib in vitro. When transfused into mice, Ba/F3 cells with the TERF2::PDGFRB fusion gene induce tumorigenesis and a shortened lifespan in cell-derived graft models, but this outcome can be improved with imatinib treatment. In summary, we have identified the novel TERF2::PDGFRB fusion gene, which exhibits oncogenic potential both in vitro and in vivo, making it a potential therapeutic target for tyrosine kinase inhibitors (TKIs).


Asunto(s)
Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteína 2 de Unión a Repeticiones Teloméricas , Animales , Humanos , Ratones , Carcinogénesis , Transformación Celular Neoplásica , Mesilato de Imatinib , Inhibidores de Proteínas Quinasas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Factor de Transcripción STAT5/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
13.
J Biol Chem ; 299(8): 104942, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343700

RESUMEN

The rapid advances in genome editing technologies have revolutionized the study of gene functions in cell or animal models. The recent generation of double-stranded DNA cleavage-independent base editors has been suitably adapted for interrogation of protein-coding genes on the basis of introducing premature stop codons or disabling the start codons. However, such versions of stop/start codon-oriented genetic tools still present limitations on their versatility, base-level precision, and target specificity. Here, we exploit a newly developed prime editor (PE) that differs from base editors by its adoption of a reverse transcriptase activity, which enables incorporation of various types of precise edits templated by a specialized prime editing guide RNA. Based on such a versatile platform, we established a prime editing-empowered method (PE-STOP) for installation of nonsense substitutions, providing a complementary approach to the present gene-targeting tools. PE-STOP is bioinformatically predicted to feature substantially expanded coverage in the genome space. In practice, PE-STOP introduces stop codons with good efficiencies in human embryonic kidney 293T and N2a cells (with medians of 29% [ten sites] and 25% [four sites] editing efficiencies, respectively), while exhibiting minimal off-target effects and high on-target precision. Furthermore, given the fact that PE installs prime editing guide RNA-templated mutations, we introduce a unique strategy for precise genetic rescue of PE-STOP-dependent nonsense mutation via the same PE platform. Altogether, the present work demonstrates a versatile and specific tool for gene inactivation and for functional interrogation of nonsense mutations.


Asunto(s)
Codón sin Sentido , Edición Génica , Animales , Humanos , Codón sin Sentido/genética , Codón de Terminación/genética , Edición Génica/métodos , Silenciador del Gen , Mutación , Línea Celular
14.
BMC Genomics ; 25(1): 249, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448842

RESUMEN

BACKGROUND: Iron plays a crucial role in the growth of Mycobacterium tuberculosis (M. tuberculosis). However, the precise regulatory mechanism governing this system requires further elucidation. Additionally, limited studies have examined the impact of gene mutations related to iron on the transmission of M. tuberculosis globally. This research aims to investigate the correlation between mutations in iron-related genes and the worldwide transmission of M. tuberculosis. RESULTS: A total of 13,532 isolates of M. tuberculosis were included in this study. Among them, 6,104 (45.11%) were identified as genomic clustered isolates, while 8,395 (62.04%) were classified as genomic clade isolates. Our results showed that a total of 12 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, such as Rv1469 (ctpD, C758T), Rv3703c (etgB, G1122T), and Rv3743c (ctpJ, G676C). Additionally, seven SNPs, including Rv0104 (T167G, T478G), Rv0211 (pckA, A302C), Rv0283 (eccB3, C423T), Rv1436 (gap, G654T), ctpD C758T, and etgB C578A, demonstrated a positive correlation with transmission clades across different countries. Notably, our findings highlighted the positive association of Rv0104 T167G, pckA A302C, eccB3 C423T, ctpD C758T, and etgB C578A with transmission clades across diverse regions. Furthermore, our analysis identified 78 SNPs that exhibited significant associations with clade size. CONCLUSIONS: Our study reveals the link between iron-related gene SNPs and M. tuberculosis transmission, offering insights into crucial factors influencing the pathogenicity of the disease. This research holds promise for targeted strategies in prevention and treatment, advancing research and interventions in this field.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Secuenciación Completa del Genoma , Hierro , Mutación , Tuberculosis/genética
15.
Int J Cancer ; 155(4): 710-718, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608177

RESUMEN

Thymic carcinoma (TC) is a rare malignant tumor with a poor prognosis, and there is currently limited data on the use of immunotherapy in patients with unresectable TC. In this study, data of patients with unresectable TC diagnosed from January 2017 were retrospectively collected from multiple centers. Treatment response, progression-free survival (PFS), overall survival (OS), survival-independent prognostic factor, and adverse events (AEs) were further analyzed. As a result, a total of 93 patients with unresectable TC were enrolled, of which 54 received first-line chemotherapy, and 39 received chemotherapy plus immune checkpoint inhibitors (ICIs). The objective response rate was 50% (27/54) in the chemotherapy group and 76.9% (30/39) in the chemotherapy plus ICIs group. The chemotherapy plus ICIs group achieved significant median PFS benefit (8.8 vs. 34.9 months, p < .001) and median OS benefit (41.8 months vs. not reached, p = .025). Multivariate analysis showed that ICIs and local therapy were independent prognostic factors for PFS. In addition, 17 patients developed immune-related AEs (IRAEs), of which 15 (38.5%) had Grade 1 or 2 IRAEs and 2 (5.1%) had Grade 3 IRAEs in the chemotherapy plus ICIs group. In conclusion, the efficacy of chemotherapy plus ICIs is superior to chemotherapy, and the adverse effects are manageable in patients with unresectable TC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Inhibidores de Puntos de Control Inmunológico , Timoma , Neoplasias del Timo , Humanos , Masculino , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Anciano , Neoplasias del Timo/tratamiento farmacológico , Neoplasias del Timo/mortalidad , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Timoma/tratamiento farmacológico , Timoma/mortalidad , Pronóstico , Supervivencia sin Progresión
16.
Am J Transplant ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642712

RESUMEN

Immune checkpoint inhibitors (ICIs) as a downstaging or bridging therapy for liver transplantation (LT) in hepatocellular carcinoma patients are rapidly increasing. However, the evidence about the feasibility and safety of pre-LT ICI therapy is limited and controversial. To this end, a multicenter, retrospective cohort study was conducted in 11 Chinese centers. The results showed that 83 recipients received pre-LT ICI therapy during the study period. The median post-LT follow-up was 8.1 (interquartile range 3.3-14.6) months. During the short follow-up, 23 (27.7%) recipients developed allograft rejection, and 7 of them (30.4%) were diagnosed by liver biopsy. Multivariate logistics regression analysis showed that the time interval between the last administration of ICI therapy and LT (TLAT) ≥ 30 days was an independent protective factor for allograft rejection (odds ratio = 0.096, 95% confidence interval 0.026-0.357; P < .001). Multivariate Cox analysis showed that allograft rejection was an independent risk factor for overall survival (hazard ratio = 9.960, 95% confidence interval 1.006-98.610; P = .043). We conclude that patients who receive a pre-LT ICI therapy with a TLAT shorter than 30 days have a much higher risk of allograft rejection than those with a TLAT longer than 30 days. The presence of rejection episodes might be associated with higher post-LT mortality.

17.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718571

RESUMEN

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparación del ADN/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Morfogénesis/efectos de la radiación , Luz Azul
18.
Small ; : e2400139, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497843

RESUMEN

The oxygen evolution reaction (OER) performance of NiCo LDH electrocatalysts can be improved through fluorine doping. The roles of Ni and Co active sites in such catalysts remain ambiguous and controversial. In addressing the issue, this study draws upon the molecular orbital theory and proposes the active center competitive mechanism between Ni and Co. The doped F-atoms can directly impact the valence state of metal atoms or exert an indirect influence through the dehydrogenation, thereby modulating the active center. As the F-atoms are progressively aggregate, the eg orbitals of Ni and Co transition from e2 g to e1 g , and subsequently to e0 g . The corresponding valence state elevates from +2 to +3, and then to +4, signifying an initial increase followed by a subsequent decrease in the electrocatalytic performance. Furthermore, a series of F-NiCo LDH catalysts are synthesized to verify the eg orbital occupancy analysis, and the catalytic OER overpotentials are 303, 243, 240, and 246 mV at the current density of 10 mA cm-2 , respectively, which coincides well with the theoretical prediction. This investigation not only provides novel mechanistic insights into the transition and competition of Ni and Co in F-NiCo LDH catalysts but also establishes a foundation for the design of high-performance catalysts.

19.
Small ; 20(4): e2305615, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37718453

RESUMEN

The development of cerium (Ce) single-atom (SA) electrocatalysts for oxygen reduction reaction (ORR) with high active-site utilization and intrinsic activity has become popular recently but remains challenging. Inspired by an interesting phenomenon that pore-coupling with single-metal cerium sites can accelerate the electron transfer predicted by density functional theory calculations, here, a facile strategy is reported for directional design of a highly active and stable Ce SA catalyst (Ce SA/MC) by the coupling of single-metal Ce-N4 sites and mesopores in nanocarbon via pore-confinement-pyrolysis of Ce/phenanthroline complexes combined with controlling the formation of Ce oxides. This catalyst delivers a comparable ORR catalytic activity with a half-wave potential of 0.845 V versus RHE to the Pt/C catalyst. Also, a Ce SA/MC-based zinc-air battery (ZAB) has exhibited a higher energy density (924 Wh kgZn -1 ) and better long-term cycling durability than a Pt/C-based ZAB. This proposed strategy may open a door for designing efficient rare-earth metal catalysts with single-metal sites coupling with porous structures for next-generation energy devices.

20.
Small ; 20(10): e2304882, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37890468

RESUMEN

Li-O2 batteries could deliver ultra-high theoretical energy density compared to current Li-ion batteries counterpart. The slow cathode reaction kinetics in Li-O2 batteries, however, limits their electrocatalytic performance. To this end, MoSe2 and Ni0.85 Se nanoflakes were decorated in carbon hollow nanoflowers, which were served as the cathode catalysts for Li-O2 batteries. The hexagonal Ni0.85 Se and MoSe2 show good structural compatibility with the same space group, resulting in a stable heterogeneous structure. The synergistic interaction of the unsaturated atoms and the built-in electric fields on the heterogeneous structure exposes abundant catalytically active sites, accelerating ion and charge transport and imparting superior electrochemical activity, including high specific capacities and stable cycling performance. More importantly, the lattice distances of the Ni0.85 Se (101) plane and MoSe2 (100) plane at the heterogeneous interfaces are highly matched to that of Li2 O2 (100) plane, facilitating epitaxial growth of Li2 O2 , as well as the formation and decomposition of discharge products during the cycles. This strategy of employing nonstoichiometric compounds to build heterojunctions and improve Li-O2 battery performance is expected to be applied to other energy storage or conversion systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA