Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 237(1): 265-278, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131553

RESUMEN

Caterpillar oral secretion (OS) contains active molecules that modulate plant defense signaling. We isolated an effector-like protein (Highly Accumulated Secretory Protein 1, HAS1) from cotton bollworm (Helicoverpa armigera) that is the most highly accumulated secretory protein of the nondigestive components in OS and belongs to venom R-like protein. Elimination of HAS1 by plant-mediated RNA interference reduced the suppression of OS on the defense response in plants. Plants expressing HAS1 are more susceptible to insect herbivory accompanied by the reduced expressions of multiple defense genes. HAS1 binds to the basic helix-loop-helix (bHLH) transcription factors, including GoPGF involved in pigmented gland formation and defense compounds biosynthesis in cotton and MYC3/MYC4 the main regulators in jasmonate (JA) signaling in Arabidopsis. The binding activity is required for HAS1 to inhibit the activation of bHLHs on plant defense gene expressions. Together with our previous study that another venom R-like protein HARP1 in cotton bollworm OS blocks JA signaling by interacting with JASMONATE-ZIM-domain repressors, we conclude that the venom R-like proteins in OS interfere with plant defense in a dual suppression manner. Considering the venom proteins in parasitic wasp assault the immune system of its host animal, our investigation reveals their conserved function in carnivorous and herbivorous insects.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mariposas Nocturnas , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transactivadores/metabolismo , Proteínas Represoras/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(28): 14331-14338, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221756

RESUMEN

Insects have evolved effectors to conquer plant defense. Most known insect effectors are isolated from sucking insects, and examples from chewing insects are limited. Moreover, the targets of insect effectors in host plants remain unknown. Here, we address a chewing insect effector and its working mechanism. Cotton bollworm (Helicoverpa armigera) is a lepidopteran insect widely existing in nature and severely affecting crop productivity. We isolated an effector named HARP1 from H. armigera oral secretion (OS). HARP1 was released from larvae to plant leaves during feeding and entered into the plant cells through wounding sites. Expression of HARP1 in Arabidopsis mitigated the global expression of wounding and jasmonate (JA) responsive genes and rendered the plants more susceptible to insect feeding. HARP1 directly interacted with JASMONATE-ZIM-domain (JAZ) repressors to prevent the COI1-mediated JAZ degradation, thus blocking JA signaling transduction. HARP1-like proteins have conserved function as effectors in noctuidae, and these types of effectors might contribute to insect adaptation to host plants during coevolution.


Asunto(s)
Gossypium/genética , Interacciones Huésped-Parásitos/genética , Mariposas Nocturnas/patogenicidad , Enfermedades de las Plantas/genética , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/crecimiento & desarrollo , Gossypium/parasitología , Mariposas Nocturnas/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Transducción de Señal/genética
3.
Mol Plant ; 10(5): 735-748, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28400323

RESUMEN

Plant reproductive organs are vulnerable to heat, but regulation of heat-shock responses in inflorescence is largely uncharacterized. Here, we report that two of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcriptional factors in Arabidopsis, SPL1 and SPL12, act redundantly in thermotolerance at the reproductive stage. The spl1-1 spl12-1 inflorescences displayed hypersensitivity to heat stress, whereas overexpression of SPL1 or SPL12 enhanced the thermotolerance in both Arabidopsis and tobacco. RNA sequencing revealed 1939 upregulated and 1479 downregulated genes in wild-type inflorescence upon heat stress, among which one-quarter (1,040) was misregulated in spl1-1 spl12-1, indicating that SPL1 and SPL12 contribute greatly to the heat-triggered transcriptional reprogramming in inflorescence. Notably, heat stress induced a large number of abscisic acid (ABA) responsive genes, of which ∼39% were disturbed in heat induction in spl1-1 spl12-1 inflorescence. Preapplication of ABA and overexpression of SPL1 restored the inflorescence thermotolerance in spl1-1 spl12-1 and in the ABA biosynthesis mutant aba2-1, but not in the pyl sextuple mutant defective in ABA receptors PYR1/PYL1/PYL2/PYL4/PYL5/PYL8. Thus, inflorescence thermotolerance conferred by SPL1 and SPL2 involves PYL-mediated ABA signaling. The molecular network consisting of SPL1 and SPL12 illustrated here shed new light on the mechanisms of plant thermotolerance at the reproductive stage.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas/fisiología , Termotolerancia , Factores de Transcripción/fisiología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Técnicas de Silenciamiento del Gen , Proteínas/genética , Reproducción , Semillas , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética
4.
Nat Commun ; 8: 13925, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067238

RESUMEN

Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation.


Asunto(s)
Arabidopsis/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/biosíntesis , MicroARNs/inmunología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Regulación del Desarrollo de la Expresión Génica , Larva/patogenicidad , Larva/fisiología , Lepidópteros/patogenicidad , Lepidópteros/fisiología , MicroARNs/genética , Modelos Biológicos , Mariposas Nocturnas/patogenicidad , Mariposas Nocturnas/fisiología , Inmunidad de la Planta/genética , Factores de Tiempo , Transactivadores/genética , Transactivadores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA