RESUMEN
BACKGROUND Owing to the increased incidence of photodermatosis caused by ultraviolet light in recent years, it is necessary to clarify the mechanisms potential photodamage to the skin and reveal possible therapeutic targets. Heat shock protein 27 (Hsp27) is well known for suppressing apoptosis. The aim of present study was to elucidate possible photoprotective mechanism between Hsp27 and p21 on ultraviolet B (UVB)-induced photodamage. MATERIAL AND METHODS The Hsp27 gene was interfered to assess the expression of its downstream effectors, cell apoptosis, and cell proliferation ability. The cell apoptosis was tested using flow cytometry method. The cell proliferation ability was tested using Cell Counting Kit-8 (CCK-8) assay. The expression of protein was tested using western-blotting method. The expression of mRNA was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The subcellular localization was elucidated using immunofluorescence. RESULTS Hsp27 knockdown decreased cell viability and increased the incidence of UVB-induced apoptosis. Compared with control group, activation of phosphorylated-Akt (p-Akt)-dependent pathway resulted in the nuclear accumulation of p21 and suppression of cell proliferation, while promoting apoptosis in Hsp27 knockdown group. In addition, Hsp27 knockdown increased p53 expression and the Bax: Bcl-2 ratio, which further accelerated the apoptotic process. CONCLUSIONS These findings complemented the mechanism of skin photodamage and demonstrated the photoprotective mechanisms of Hsp27 in HaCaT cells, which might implicate a potential therapeutic target of photodamage and photodermatosis.
Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Choque Térmico/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Chaperonas Moleculares/metabolismo , Apoptosis/efectos de la radiación , Proteínas Reguladoras de la Apoptosis/metabolismo , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Citometría de Flujo , Humanos , Queratinocitos/patología , ARN Interferente Pequeño/genética , Transducción de Señal , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Rayos UltravioletaRESUMEN
A new andrastin-type meroterpenoid penimerodione A (1), and three known analogues (2-4), were isolated from the culture of a marine-derived fungus Penicillium chrysogenum HNNU w0032 by the guidance of MS/MS-based molecular networking. The planar structure of 1 was established by extensive NMR spectroscopic and HRESIMS analyses, and the absolute configuration was elucidated by a single-crystal X-ray diffraction. Compound 1 showed significant inhibitory effect on NO production in LPS-stimulated BV-2 macrophages with an IC50 value of 5.9 ± 0.3 µM. The Western blot result revealed that compound 1 exerted an anti-neuroinflammatory effect via the MAPK signalling pathway.
RESUMEN
Super-resolution ultrasound (SRUS) visu-Microvascular Phantom alises microvasculature beyond the ultrasound diffraction limit (wavelength (λ)/2) by localising and tracking spatially isolated microbubble contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below 100 µm are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to ~60 µm(λ/5.8; λ=~350 µm ). SRUS imaging was performed and validated with optical measurements. The average SRUS error was 15.61 µm(λ/22) with a standard deviation error of 11.44 µm. The average error decreased to 7.93 µm(λ/44) once the number of localised microbubbles surpassed 1000 per estimated diameter. In addition, the less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
RESUMEN
Seven polyketides, including an undescribed depsidone (1) and six previously reported 3,6,8-trihydroxy-1-methylxanthone (2), 7-hydroxy-2-(2-hydroxypropyl)-5-methylchromone (3), methyl3-chloro-6-hydroxy-2-(4-hy-droxy-2-methoxy-6-methylphenoxy)-4- methoxybenzoate (4), xylarianin A (5), 4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydro-xymethyl-2-cyclohexen-1-one (6) and alternariol (7), have been isolated from cultures of the mangrove-derived fungus Penicillium robsamsonii HNNU0006. The structure of compound 1 was elucidated by extensive spectroscopic analysis and X-ray crystallography. Furthermore, all the compounds were evaluated their cytotoxic activities, and compounds 1 and 7 showed weak cytotoxicity against two cell lines Vero and A549 with IC50 values ranging from 95.6 and 296.5 µM, relative to the positive control Etoposide phosphate with IC50 values of 24.5 and 18.7 µM, respectively.
RESUMEN
Nine metabolites, including three undescribed alkaloids pyripyropenes VW (1-2), penicioxa A (4), two previously reported pyripyropene A (3), oxaline (5), three grisephenone-type xanthone derivatives (6-8), and a diphenyl ether derivative 4-chloro-7,4'-dihydroxy-5,2'-dimethoxy-2-methylformate-6'-methybenzophone (9), were isolated from cultures of the mangrove-derived fungus Penicillium robsamsonii HNNU0006. Their structures were determined by spectroscopic analysis, ECD calculations, together with DP4+ probability analysis. Furthermore, all the isolated compounds were tested for cytotoxicity and anti-phytopathogenic fungal activities. Compounds 6-8 showed moderate cytotoxicity against tumor cell lines A549, with IC50 values ranging from 5.68 ± 0.21 to 9.71 ± 0.34 µg/mL, respectively.
Asunto(s)
Alcaloides , Penicillium , Penicillium/química , Estructura Molecular , Humanos , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Alcaloides/química , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/química , China , Rhizophoraceae/microbiologíaRESUMEN
Root-associated microbiota provide great fitness to hosts under environmental stress. However, the underlying microecological mechanisms controlling the interaction between heavy metal-stressed plants and the microbiota are poorly understood. In this study, we screened and isolated representative amplicon sequence variants (strain M4) from rhizosphere soil samples of Trifolium repens L. growing in areas with high concentrations of heavy metals. To investigate the microecological mechanisms by which T. repens adapts to heavy metal stress in abandoned mining areas, we conducted potting experiments, bacterial growth promotion experiments, biofilm formation experiments, and chemotaxis experiments. The results showed that high concentrations of heavy metals significantly altered the rhizosphere bacterial community structure of T. repens and significantly enriched Microbacterium sp. Strain M4 was demonstrated to significantly increased the biomass and root length of T. repens under heavy metal stress. Additionally, L-proline and stigmasterol could promote bacterial growth and biofilm formation and induce chemotaxis for strain M4, suggesting that they are key rhizosphere secretions of T. repens for Microbacterium sp. recruitment. Our results suggested that T. repens adapted the heavy metal stress by reshaping rhizosphere secretions to modify the rhizosphere microbiota.
Asunto(s)
Metales Pesados , Microbacterium , Minería , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Trifolium , Trifolium/microbiología , Contaminantes del Suelo/toxicidad , Raíces de Plantas/microbiología , Microbacterium/fisiología , Microbiota/efectos de los fármacos , Plomo/toxicidad , ZincRESUMEN
TGF-ß is thought to be involved in the physiological functions of early organ development and pathological changes in substantial organ fibrosis, while studies around adipose tissue function and systemic disorders of glucolipid metabolism are still scarce. In this investigation, two animal models, aP2-SREBP-1c mice and ob/ob mice, were used. TGF-ß pathway showed up-regulated in the inguinal white adipose tissue (iWAT) of the two models. SB431542, a TGF-ß inhibitor, successfully increased inguinal white adipocyte size by more than 1.5 times and decreased the weight of Peripheral organs including liver, Spleen and Kidney to 73.05%/62.18%/73.23% of pre-administration weights. The iWAT showed elevated expression of GLUTs and lipases, followed by a recovery of circulation GLU, TG, NEFA, and GLYCEROL to the wild-type levels in aP2-SREBP-1c mice. In contrast, TGF-ß inhibition did not have similar effects on that of ob/ob mice. In vitro, TGF-ß blocker treated mature adipocytes had considerably higher levels of glycerol and triglycerides than the control group, whereas GLUTs and lipases expression levels were unchanged. These findings show that inhibiting the abnormally upregulated TGF-ß pathway will only restore iWAT expansion and ameliorate the global metabolic malfunction of glucose and lipids in lipodystrophy, not obesity.
Asunto(s)
Metabolismo de los Lípidos , Lipodistrofia , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Glicerol , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Lipodistrofia/tratamiento farmacológico , Glucosa/metabolismoRESUMEN
Cell transplantation has brought about a breakthrough in the treatment of nerve injuries, and the efficacy of cell transplantation compared to drug and surgical therapies is very exciting. In terms of transplantation targets, the classic cells include neural stem cells (NSCs) and Schwann cells, while a class of cells that can exist and renew throughout the life of the nervous system - olfactory ensheathing cells (OECs) - has recently been discovered in the olfactory system. OECs not only encircle the olfactory nerves but also act as macrophages and play an innate immune role. OECs can also undergo reprogramming to transform into neurons and survive and mature after transplantation. Currently, many studies have confirmed the repairing effect of OECs after transplantation into injured nerves, and safe and effective results have been obtained in clinical trials. However, the specific repair mechanism of OECs among them is not quite clear. For this purpose, we focus here on the repair mechanisms of OECs, which are summarized as follows: neuroprotection, secretion of bioactive factors, limitation of inflammation and immune regulation, promotion of myelin and axonal regeneration, and promotion of vascular proliferation. In addition, integrating the aspects of harvesting, purification, and prognosis, we found that OECs may be more suitable for transplantation than NSCs and Schwann cells, but this does not completely discard the value of these classical cells. Overall, OECs are considered to be one of the most promising transplantation targets for the treatment of nerve injury disorders.
Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Bulbo Olfatorio , Vaina de Mielina , Neuronas , Trasplante de Células/métodos , Regeneración Nerviosa , NeuroglíaRESUMEN
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
RESUMEN
Background: Pemphigoid diseases constitute a group of autoimmune blistering disorders characterized by subepithelial blistering. The association between pemphigoid diseases and both end-stage kidney disease (ESKD) and its treatment is notable. However, there is limited evidence about the management of pemphigoid diseases in patients with ESKD. This systematic review compiled case reports and relevant studies, summarized the underlying mechanisms of pemphigoid diseases in patients with ESKD, and summarized the efficacy of various therapies. Methods: A systematic search of PubMed and Embase was performed for articles published between 1982 to June 2, 2024. Results: Fifty-three case reports and eight relevant studies were included. Triggers for pemphigoids in patients with ESKD included materials used to treat ESKD, immune dysregulation of patients with ESKD, and rejection of renal allograft. Treatment for these patients included removing triggers, as well as administering of corticosteroids, mycophenolate mofetil (MMF), tetracyclines, rituximab, methotrexate, dapsone, azathioprine, cyclosporine, intravenous immunoglobin (IVIG), plasmapheresis, and Janus kinase inhibitors. Conclusion: Removing triggers is the most effective strategy. Despite their suboptimal efficacy, corticosteroids remain the most commonly used agents in this patient population. MMF, tetracyclines, and rituximab are less used but with benefits. There are significant adverse effects associated with methotrexate treatment. Other treatment may also be beneficial and require further investigation. These findings may enable clinicians to optimize the therapeutic approach for these patients.
Asunto(s)
Fallo Renal Crónico , Penfigoide Ampolloso , Humanos , Penfigoide Ampolloso/terapia , Penfigoide Ampolloso/tratamiento farmacológico , Penfigoide Ampolloso/etiología , Penfigoide Ampolloso/inmunología , Fallo Renal Crónico/terapia , Fallo Renal Crónico/etiología , Fallo Renal Crónico/complicaciones , Inmunosupresores/uso terapéutico , Inmunosupresores/efectos adversos , Trasplante de Riñón/efectos adversosRESUMEN
Neurological diseases are destructive, mainly characterized by the failure of endogenous repair, the inability to recover tissue damage, resulting in the increasing loss of cognitive and physical function. Although some clinical drugs can alleviate the progression of these diseases, but they lack therapeutic effect in repairing tissue injury and rebuilding neurological function. More and more studies have shown that cell therapy has made good achievements in the application of nerve injury. Olfactory ensheathing cells (OECs) are a special type of glial cells, which have been proved to play an important role as an alternative therapy for neurological diseases, opening up a new way for the treatment of neurological problems. The functional mechanisms of OECs in the treatment of neurological diseases include neuroprotection, immune regulation, axon regeneration, improvement of nerve injury microenvironment and myelin regeneration, which also include secreted bioactive factors. Therefore, it is of great significance to better understand the mechanism of OECs promoting functional improvement, and to recognize the implementation of these treatments and the effective simulation of nerve injury disorders. In this review, we discuss the function of OECs and their application value in the treatment of neurological diseases, and position OECs as a potential candidate strategy for the treatment of nervous system diseases.
Asunto(s)
Enfermedades Neurodegenerativas , Traumatismos de los Nervios Periféricos , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Axones/metabolismo , Regeneración Nerviosa/fisiología , Bulbo OlfatorioRESUMEN
P2X7 receptor (P2X7) is a non-selective and ATP-sensitive ligand-gated cation channel. Studies have confirmed that it is expressed in a variety of cells and correlates with their function, frequently in immune cells and tumor cells. We found increased expression of this receptor in many tumor cells, and it has a role in tumor survival and progression. In immune cells, upregulation of the receptor has a double effect on tumor suppression as well as tumor promotion. This review describes the structure of P2X7 and its role in the tumor microenvironment and presents possible mechanisms of P2X7 in tumor invasion and metastasis. Understanding the potential of P2X7 for tumor treatment, we also present several therapeutic agents targeting P2X7 and their mechanisms of action. In conclusion, the study of P2X7 is an important guideline for the use of clinical tumor therapy and may be able to provide a new idea for tumor treatment, but considering the complexity of the biological effects of P2X7, the drugs should be used with caution in clinical practice.
RESUMEN
Skin aging caused by UV radiation is called photoaging is characterized by skin roughness and dryness accompanied by a significant reduction of dermal collagen. Rapamycin is a macrolide immunosuppressant which has been shown to exhibit "anti-aging" effects in cells and organisms, however, its roles in the skin photoaging remains unclear. Here, we investigate the role of rapamycin and HSP27, which we have previously identified as an inhibitor of UV-induced apoptosis and senescence in HaCat cells, in a UVA-induced photoaging model of primary human dermal fibroblasts (HDFs). Results from senescence-associated beta-galactosidase (SA-ß-gal) staining revealed that rapamycin significantly reduced senescence in UVA-treated HDFs. In addition, treatment with rapamycin significantly increased cell autophagy levels, decreased the expression of p53 and phosphorylated HSP27, and reduced genotoxic and oxidative cellular stress levels in UVA-induced HDFs. Knockdown of HSP27 resulted in a significant increase of MMP-1 and MMP-3 as well as a decrease in type I collagen expression. Rapamycin mitigated these effects by activation of the classical TGF-ß/Smad signaling pathway and increasing the transcriptional activity of MAPK/AP-1. Taken together, these results suggest that rapamycin may potentially serve as a preventive and therapeutic agent for UVA-induced photoaging of the skin.
RESUMEN
We propose a synthetic strategy to synthesize cobalt nanoparticle cores encapsulated in tunable N-doped graphene shells on N-doped reduced graphene oxide as a highly efficient and stable pH-universal electrocatalyst. The superior performance is mainly attributed to the optimization of the electrocatalytic centre and the improvement of the electronic configuration.
RESUMEN
MYH9 has dual functions in tumors. However, its role in inducing tumor stemness in hepatocellular carcinoma (HCC) is not yet determined. Here, we found that MYH9 is an effective promoter of tumor stemness that facilitates hepatocellular carcinoma pathogenesis. Importantly, targeting MYH9 remarkably improved the survival of hepatocellular carcinoma-bearing mice and promoted sorafenib sensitivity of hepatocellular carcinoma cells in vivo. Mechanistic analysis suggested that MYH9 interacted with GSK3ß and reduced its protein expression by ubiquitin-mediated degradation, which therefore dysregulated the ß-catenin destruction complex and induced the downstream tumor stemness phenotype, epithelial-mesenchymal transition, and c-Jun signaling in HCC. C-Jun transcriptionally stimulated MYH9 expression and formed an MYH9/GSK3ß/ß-catenin/c-Jun feedback loop. X protein is a hepatitis B virus (HBV)-encoded key oncogenic protein that promotes HCC pathogenesis. Interestingly, we observed that HBV X protein (HBX) interacted with MYH9 and induced its expression by modulating GSK3ß/ß-catenin/c-Jun signaling. Targeting MYH9 blocked HBX-induced GSK3ß ubiquitination to activate the ß-catenin destruction complex and suppressed cancer stemness and EMT. Based on TCGA database analysis, MYH9 was found to be elevated and conferred poor prognosis for hepatocellular carcinoma patients. In clinical samples, high MYH9 expression levels predicted poor prognosis of hepatocellular carcinoma patients. These findings identify the suppression of MYH9 as an alternative approach for the effective eradication of CSC properties to inhibit cancer migration, invasion, growth, and sorafenib resistance in HCC patients. Our study demonstrated that MYH9 is a crucial therapeutic target in HCC.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/genética , Neoplasias Hepáticas/tratamiento farmacológico , Cadenas Pesadas de Miosina/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Xenoinjertos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Sorafenib/farmacología , Transactivadores/genética , Ubiquitinación/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/genética , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/genéticaRESUMEN
OBJECTIVE: To explore the association of mitogen-activated protein kinase kinase-4 (MAP2K4) with the pathological features, prognosis and expression of estrogen receptor (ER) in patients with breast cancer. METHODS: The expression of MAP2K4 was detected immunohistochemically in 102 breast cancer tissues. Chi square test was used to analyze the correlation of MAP2K4 expression with the clinicopathological features of the patients. Kaplan-Meier and log rank test were used for survival analysis of the patients. Multivariate survival analysis was performed using Cox proportional hazard regression model. The correlation between the expressionsof MAP2K4 and ER was investigated using Spearman rank correlation test. RESULTS: Immunohistochemical analysis revealed low MAP2K4 expression in 55.9%(57/102) and high MAP2K4 expression in 44.1%(45/102) of the breast cancer tissues. The expression of MAP2K4 was significantly correlated with the pathological grades of breast cancer (P=0.011). Kaplan-Meier survival analysis showed that patients with a high expression of MAP2K4 had a shorter overall survival rate than those with low MAP2K4 expressions (P=0.009). Multivariate analysis identified high expression of MAP2K4 as the independent predictor of a poor outcome of patients with breast cancer. The expressions of MAP2K4 and ER were not significantly correlated, but ER-negative patients with a high MAP2K4 expressionshowed the shortest overall survival time. CONCLUSION: Overexpression of MAP2K4 promotes the progression in breast cancer and is associated with a poor outcome of the patients. TheER-negativepatients with a high MAP2K4 expression have the shortest overall survival time, suggestingthe value of combined examination of MAP2K4 and ER in accurate estimation of the prognosis of breast cancer patients.
Asunto(s)
Neoplasias de la Mama/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Receptores de Estrógenos/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Estimación de Kaplan-Meier , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de SupervivenciaRESUMEN
To provide support for the efficient use of water and fertilizer technology to double-season rice cultivation, water and fertilizer coupling mode was applied in this research, including two irrigation methods and four N levels. The irrigation methods were flood irrigation and intermittent irrigation, while four N levels were high-N, middle-N, low-N and none-N. Field experiment was conducted to study the effect of water and fertilizer coupling mode on CH4 and N2O emission. The results showed that the accumulated CH4 emissions were significantly reduced by intermittent irrigation, in comparison with flood irrigation, the reduction in early rice season were from 13. 18 kg.hm-2 to 87. 90 kg.hm-2, and were from 74. 48 kg.hm-2 to 131. 07 kg.hm-2 in late rice season, with a rate of 24. 4% -67. 4% and 42. 5% -65. 5% respectively; whereas the accumulated N20 emissions were increased, the increment were from 0. 03 kg.hm-2 to 0. 24 kg.hm-2 in early rice season and from 0. 35 kg.hm-2 to 1. 53 kg.hm-2 in late rice season when compared flood irrigation, increased by 6.2% -18. 3% and 40.2% - 80.9% respectively. On the whole, intermittent irrigation reduces the warming potential of greenhouse gases (GWP), which were decreased by 18. 8% to 58. 6% in early rice season and by 34. 4% to 60. 1% in late rice season, and the reduction of total GWP were from 2 388 to 4 151 kg. hm-2 (CO2 eq), with a rate of 41% -54% . Through correlation analysis it found that CH4 emissions from soil were significantly related with soil solution Eh and solution CH4 concentration. In comparison with the flood irrigation, the application of intermittent irrigation in double-season rice cultivation was conducive to CH4 reduction, though the increase came in N2O, but the GWPs were significantly reduced. Comprehensively, intermittent irrigation matching with middle-N is more benefit to double-season rice cultivation.
Asunto(s)
Fertilizantes , Metano/análisis , Nitrógeno/química , Óxido Nitroso/análisis , Oryza , Riego Agrícola , Gases , Estaciones del Año , Suelo , AguaRESUMEN
This study was performed to culture and preliminarily identify the primordial germ cells (PGCs) isolated from the genital ridge of the Mongolian sheep fetus. The growth characteristics of the sheep PGCs were detected in different culture systems such as culture media, resources, and state and passages of feeder cells. The obtained embryonic germ (EG) cells were identified by morphology, enzymology, and immunofluorescence. The results showed that the sheep EG cell colonies were ridgy, typically nest like, and compact, and had regular edges. Alkaline phosphatase staining reaction was weakly positive. EG cells expressed Kit, Rex-1, Nanog, and Oct-4. Immunofluorescence detection was weakly positive for Oct3/4, whereas positive for SSEA-1, SSEA-3, SSEA-4, TRA-1-61, and TRA-1-80.
Asunto(s)
Línea Celular , Células Germinativas/citología , Ovinos , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Técnicas de Cultivo de Célula , Antígeno Lewis X/metabolismo , Factor 3 de Transcripción de Unión a Octámeros , Antígenos Embrionarios Específico de Estadio/metabolismoRESUMEN
OBJECTIVE: To study the expression of ALDH1 in colon cancer and its clinical significance. METHODS: The expression of ALDH1 was examined in 98 surgical specimens of primary colonic carcinoma and 15 normal colon tissues with immunohistochemistry method. The correlations of the expression with clinicopathological parameters and prognosis of colon cancer were analyzed. RESULTS: The positive rate of expression of ALDH1 was 76.5% (75/98) in the cancer tissues and 13.3% (2/15) in normal colon tissues. There were an obvious statistical difference (P<0.05) between the two groups. The ALDH1 expression was significantly correlated with the histological grade, TNM stages and lymph node metastasis in colon cancer (P<0.05). It was also related with patients' survival time, those with positive expressions had a poor prognosis (P<0.05). CONCLUSIONS: The results suggeste that the overexpression of ALDH1 plays important roles in proliferation and progression in colon cancer, the ALDH1 may be a valuable marker to predict the biological behavior and trend of metastasis of colon cancer.