Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pineal Res ; 68(3): e12631, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31943334

RESUMEN

In the elderly with atherosclerosis, hypertension and diabetes, vascular calcification and ageing are ubiquitous. Melatonin (MT) has been demonstrated to impact the cardiovascular system. In this study, we have shown that MT alleviates vascular calcification and ageing, and the underlying mechanism involved. We found that both osteogenic differentiation and senescence of vascular smooth muscle cells (VSMCs) were attenuated by MT in a MT membrane receptor-dependent manner. Moreover, exosomes isolated from VSMCs or calcifying vascular smooth muscle cells (CVSMCs) treated with MT could be uptaken by VSMCs and attenuated the osteogenic differentiation and senescence of VSMCs or CVSMCs, respectively. Moreover, we used conditional medium from MT-treated VSMCs and Transwell assay to confirm exosomes secreted by MT-treated VSMCs attenuated the osteogenic differentiation and senescence of VSMCs through paracrine mechanism. We also found exosomal miR-204/miR-211 mediated the paracrine effect of exosomes secreted by VSMCs. A potential target of these two miRs was revealed to be BMP2. Furthermore, treatment of MT alleviated vascular calcification and ageing in 5/6-nephrectomy plus high-phosphate diet-treated (5/6 NTP) mice, while these effects were partially reversed by GW4869. Exosomes derived from MT-treated VSMCs were internalised into mouse artery detected by in vivo fluorescence image, and these exosomes reduced vascular calcification and ageing of 5/6 NTP mice, but both effects were largely abolished by inhibition of exosomal miR-204 or miR-211. In summary, our present study revealed that exosomes from MT-treated VSMCs could attenuate vascular calcification and ageing in a paracrine manner through an exosomal miR-204/miR-211.


Asunto(s)
Melatonina/farmacología , MicroARNs/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Calcificación Vascular/metabolismo , Envejecimiento , Animales , Diferenciación Celular/efectos de los fármacos , Exosomas/química , Exosomas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Calcificación Vascular/fisiopatología
2.
Pathobiology ; 84(1): 38-48, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27458977

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) exhibits poor prognosis and resistance to chemotherapy. This study was to identify the biomarkers associated with the progression, poor prognosis and chemoresistance of PDAC. METHODS: miR-34a and miR-150 levels in the plasma and tissues from PDAC patients were measured by real-time PCR. Xenograft PDAC tumor models were established in mice by inoculation of CD133+ stem cells isolated from PDAC tumors. Protein expression was measured by Western blot. RESULTS: The plasma miR-34a and miR-150 levels were significantly lower in PDAC patients than in patients with benign pancreatic lesions and in healthy subjects. The miR-34a and miR-150 levels in the tumor tissues were significantly lower than in pancreatic tissues with benign lesions. The protein levels of CD133, Notch1, Notch2 and Notch4 receptors in PDAC tumor tissues were significantly higher than in pancreatic tissues with benign lesions. miR-34a injection significantly inhibited the tumor growth of PDAC tumors and sensitized the anticancer effects of 5-fluorouracil (5-FU). miR-34a significantly inhibited Notch1, Notch2 and Notch4 expression in xenograft tumor tissues in vivo and BxPC-3 cells in vitro. miR-34a and miR-150 significantly induced apoptosis and inhibited proliferation, invasion and migration in BxPC-3 cells. miR-34a, but not miR-150, significantly sensitized the anticancer effect of 5-FU in BxPC-3 cells in vitro. CONCLUSION: A loss of expression of miR-34a, but not of miR-150, is associated with disease progression and poor prognosis in PDAC patients, and may be involved in the chemoresistance of PDAC cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias Pancreáticas/genética , Adulto , Anciano , Animales , Carcinoma Ductal Pancreático/diagnóstico , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Distribución Aleatoria , Neoplasias Pancreáticas
3.
Mol Cell Biochem ; 422(1-2): 1-10, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27619662

RESUMEN

Replicative senescence of vascular smooth muscle cells (VSMCs) contributes to aging as well as age-related cardiovascular diseases. Rapamycin can delay the onset of aging-related diseases via inhibition of the mammalian target of rapamycin (mTOR), but its role in vascular aging remains elusive. This study investigated the involvement of mTOR signaling in replicative senescence of VSMCs. Replicative senescence was induced by the extended passages of human VSMCs. Aging-related cell morphology was observed. The aging-related proteins and enzyme activity, and oxidative stress were measured. Significant increase in SA-ß-gal activity and protein expression, p53 and p16 protein expression, proliferation index (PI), malondialdehyde (MDA) concentration, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activity, and significant decrease in telomerase activity was observed in aging VSMCs compared to young cells. Significant activation of PI3K/Akt/mTOR signaling was observed in aging cells but not young cells. Pretreatment of VSMCs with PI3K inhibitor blocked while PI3K activator increased the changes of the above replicative senescence-related parameters in VSMCs. Rapamycin and silencing of mTOR expression inhibited replicative senescence in VSMCs through decreasing the level of p-mTOR Ser2448, p-mTOR Thr2446, and S6K1 phosphorylation. This study for the first time demonstrated that the PI3K/Akt/mTOR/S6K1 signal pathway plays an important role in regulating replicative senescence of human VSMCs.


Asunto(s)
Senescencia Celular/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Células Cultivadas , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética
4.
Exp Cell Res ; 323(2): 352-8, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24607448

RESUMEN

Vascular calcification is common in patients with peripheral artery diseases and coronary artery diseases. The osteoblastic differentiation of vascular smooth muscle cells (VSMCs) contributes significantly to vascular calcification. Adiponectin has been demonstrated to exert a protective effect in osteoblastic differentiation of VSMCs through regulating mTOR activity. However, the upstream and downstream signaling molecules of adiponectin-regulated mTOR signaling have not been identified in VSMCs with osteoblastic differentiation. In this study, the VSMC differentiation model was established by beta-glycerophosphate (ß-GP) induction. The mineralization was identified by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot or immunofluorescence. Adiponectin attenuated osteoblastic differentiation and mineralization of ß-GP-treated VSMCs. Adiponectin inhibited osteoblastic differentiation of VSMCs through increasing the level of p-AMPKα. Pretreatment of VSMCs with AMPK inhibitor blocked while AMPK activator enhanced the effect of adiponectin on osteoblastic differentiation of VSMCs. Adiponectin upregulated TSC2 expression and downregulated mTOR and S6K1 phosphorylation in ß-GP-treated VSMCs. Adiponectin treatment significantly attenuates the osteoblastic differentiation and calcification of VSMCs through modulation of AMPK-TSC2-mTOR-S6K1 signal pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/farmacología , Diferenciación Celular , Células Endoteliales/citología , Osteoblastos/citología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Calcificación Fisiológica , Calcio/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glicerofosfatos/farmacología , Humanos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Cardiovasc Diabetol ; 13: 153, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25407893

RESUMEN

BACKGROUND: Arterial calcification is an important pathological change of diabetic vascular complication. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important cytopathologic role in arterial calcification. The glucagon-like peptide-1 receptor agonists (GLP-1RA), a novel type of antidiabetic drugs, exert cardioprotective effects through the GLP-1 receptor (GLP-1R). However, the question of whether or not GLP-1RA regulates osteoblastic differentiation and calcification of VSMCs has not been answered, and the associated molecular mechanisms have not been examined. METHODS: Calcifying VSMCs (CVSMCs) were isolated from cultured human arterial smooth muscle cells through limiting dilution and cloning. The extent of matrix mineralization was measured by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot. Gene expression of receptor activator of nuclear factor-κB ligand (RANKL) was silenced by small interference RNA (siRNA). RESULTS: Exenatide, an agonist of GLP-1 receptor, attenuated ß-glycerol phosphate (ß-GP) induced osteoblastic differentiation and calcification of human CVSMCs in a dose- and time-dependent manner. RANKL siRNA also inhibited osteoblastic differentiation and calcification. Exenatide decreased the expression of RANKL in a dose-dependent manner. 1,25 vitD3 (an activator of RANKL) upregulated, whereas BAY11-7082 (an inhibitor of NF-κB) downregulated RANKL, alkaline phosphatase (ALP), osteocalcin (OC), and core binding factor α1 (Runx2) protein levels and reduced mineralization in human CVSMCs. Exenatide decreased p-NF-κB and increased p-AMPKα levels in human CVSMCs 48 h after treatment. Significant decrease in p-NF-κB (p-Ser(276), p-Ser(536)) level was observed in cells treated with exenatide or exenatide + BAY11-7082. CONCLUSION: GLP-1RA exenatide can inhibit human VSMCs calcification through NF-κB/RANKL signaling.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Músculo Liso Vascular/metabolismo , FN-kappa B/metabolismo , Péptidos/farmacología , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos , Calcificación Vascular/tratamiento farmacológico , Ponzoñas/farmacología , Diferenciación Celular/efectos de los fármacos , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Humanos , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , ARN Interferente Pequeño/genética , Receptores de Glucagón/efectos de los fármacos
6.
Appl Physiol Nutr Metab ; 49(6): 762-772, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346295

RESUMEN

Sarcopenia was recently reported to be relevant to an increased macro-and microvascular disease risk. Sarcopenia index (SI) has been identified as a surrogate marker for sarcopenia. The aim of the present study was to investigate the association between macro- and microvascular disease and SI in patients with type 2 diabetes mellitus (T2DM). A total of 783 patients with T2DM were enrolled in this cross-sectional study. The SI was calculated by (serum creatinine [mg/dL]/cystatin C [mg/L]) × 100. The subjects were divided into three groups according to SI tertiles: T1 (41.27-81.37), T2 (81.38- 99.55), and T3 (99.56-192.31). Parameters of macro- and microvascular complications, including diabetic retinopathy (DR), micro- and macroalbuminuria (MAU), diabetic peripheral neuropathy (DPN), and lower extremity peripheral artery disease (LEAD) were evaluated. Multivariate logistic regression analysis revealed that when taking the top tertile of SI as a reference, an increasing trend of the prevalence of DR, MAU, DPN, and LEAD were presented (all P for trend  < 0.05), where the OR (95% CI) for DR prevalence was 1.967 (1.252-3.090) in T2, 2.195 (1.278-3.769) in T1, for MAU was 1.805 (1.149-2.837) in T2, 2.537 (1.490-4.320) in T1, for DPN was 2.244 (1.485-3.391) in T2, 3.172 (1.884-5.341) in T1, and for LEAD was 2.017 (1.002-4.057) in T2, 2.405 (1.107-5.225) in T1 (all P < 0.05). Patients with lower SI were more inclined to have an increased risk of macro- and microvascular damage in T2DM population, which may be related to sarcopenia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Sarcopenia/epidemiología , Sarcopenia/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Anciano , Retinopatía Diabética/epidemiología , Angiopatías Diabéticas/epidemiología , Neuropatías Diabéticas/epidemiología , Prevalencia , Albuminuria/epidemiología , Creatinina/sangre , Cistatina C/sangre , Factores de Riesgo , Enfermedad Arterial Periférica/epidemiología , Enfermedad Arterial Periférica/complicaciones
7.
Amino Acids ; 44(3): 961-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23135225

RESUMEN

It has been hypothesized that adipocytokines originating from adipose tissue may have an important role in bone metabolism. Vaspin is a novel adipocytokine isolated from visceral white adipose tissue, which has been reported to have anti-apoptotic effects in vascular endothelial cells. However, to the best of our knowledge there is no information regarding the effects of vaspin on osteoblast apoptosis. This study therefore examined the possible effects of vaspin on apoptosis in human osteoblasts (hOBs). Our study established that vaspin inhibits hOBs apoptosis induced by serum deprivation, as determined by ELISA and TUNEL assays. Western blot analysis revealed that vaspin upregulates the expression of Bcl-2 and downregulates that of Bax in a dose-dependent manner. Vaspin stimulated the phosphorylation of ERK, and pretreatment of hOBs with the ERK inhibitor PD98059 blocked the vaspin-induced activation of ERK, however, vaspin did not stimulate the phosphorylation of p38, JNK or Akt. Vaspin protects hOBs from serum deprivation-induced apoptosis, which may be mediated by activating the MAPK/ERK signaling pathway.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Osteoblastos/citología , Serpinas/metabolismo , Células Cultivadas , Humanos , Osteoblastos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
8.
Aging Dis ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37815911

RESUMEN

Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.

9.
Aging Dis ; 14(3): 794-824, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191431

RESUMEN

Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.

10.
Diab Vasc Dis Res ; 20(2): 14791641231169246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36990072

RESUMEN

BACKGROUND: Our previous studies have shown that the basic helix-loop-helix family member e40 (Bhlhe40) plays a critical role in regulating calcification and senescence of vascular smooth muscle cells induced by high glucose. In this study, we determined the association between serum Bhlhe40 levels and subclinical atherosclerosis in patients with type 2 diabetes mellitus (T2DM). METHODS: 247 patients with T2DM were included in this cross-sectional study between June 2021 and July 2022. The presence of subclinical atherosclerosis was evaluated by carotid ultrasonography. Serum Bhlhe40 concentrations were measured with an ELISA kit. RESULTS: Serum Bhlhe40 levels were remarkably higher in the subclinical atherosclerosis group than in the subjects without subclinical atherosclerosis (p < 0.001). Correlation analysis showed a positive correlation between serum Bhlhe40 and carotid intima-media thickness (C-IMT) (r = 0.155, p = 0.015). The optimal threshold of serum Bhlhe40 > 5.67 ng/mL had an area under the ROC curve (AUC) was 0.709 (p < 0.001). In addition, serum Bhlhe40 levels were associated with the prevalence of subclinical atherosclerosis (OR: 1.790, 95% CI: 1.414-2.266, p < 0.001). CONCLUSION: Serum Bhlhe40 levels were significantly higher in T2DM subjects with subclinical atherosclerosis and positively associated with C-IMT.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Estudios Transversales , Grosor Intima-Media Carotídeo , Factores de Riesgo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/epidemiología , Proteínas de Homeodominio , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
11.
Aging Dis ; 14(1): 170-183, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36818559

RESUMEN

Vascular calcification and aging often increase morbidity and mortality in patients with diabetes mellitus (DM); however, the underlying mechanisms are still unknown. In the present study, we found that Bcl-2 modifying factor (BMF) and BMF antisense RNA 1 (BMF-AS1) were significantly increased in high glucose-induced calcified and senescent vascular smooth muscle cells (VSMCs) as well as artery tissues from diabetic mice. Inhibition of BMF-AS1 and BMF reduced the calcification and senescence of VSMCs, whereas overexpression of BMF-AS1 and BMF generates the opposite results. Mechanistic analysis showed that BMF-AS1 interacted with BMF directly and up-regulated BMF at both mRNA and protein levels, but BMF did not affect the expression of BMF-AS1. Moreover, knocking down BMF-AS1 and BMF suppressed the calcification and senescence of VSMCs, and BMF knockout (BMF-/-) diabetic mice presented less vascular calcification and aging compared with wild type diabetic mice. In addition, higher coronary artery calcification scores (CACs) and increased plasma BMF concentration were found in patients with DM, and there was a positive correlation between CACs and plasma BMF concentration. Thus, BMF-AS1/BMF plays a key role in promoting high glucose-induced vascular calcification and aging both in vitro and in vivo. BMF-AS1 and BMF represent potential therapeutic targets in diabetic vascular calcification and aging.

12.
Front Mol Neurosci ; 15: 844193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359573

RESUMEN

Aging-related neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.

13.
Signal Transduct Target Ther ; 7(1): 231, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817770

RESUMEN

Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.


Asunto(s)
Enfermedades Cardiovasculares , Nanopartículas , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Senescencia Celular , Humanos , Nanopartículas/uso terapéutico , Estrés Oxidativo
14.
Front Aging Neurosci ; 14: 949074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062157

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia with no effective therapies. Aging is a dominant risk factor for AD. The neurovascular unit (NVU) plays an important role in maintaining homeostasis of the brain microenvironment. The accelerated aging of NVU cells may directly impair NVU function and contribute to AD pathogenesis. However, the expression patterns of aging-related genes (AGs) in NVU cells of AD remain unclear. In this study, we performed single-nucleus transcriptome analysis of 61,768 nuclei from prefrontal cortical samples of patients with AD and normal control (NC) subjects. Eight main cell types were identified, including astrocytes, microglia, excitatory neurons, inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, pericytes, and endothelial cells. Transcriptomic analysis identified the expression patterns of AGs in NVU cells of AD. Gene set enrichment analysis confirmed the key aging-associated cellular pathways enriched in microglia and oligodendrocytes. These aging-related transcriptomic changes in NVU were cross-validated using bulk transcriptome data. The least absolute shrinkage and selection operator regression method was used to select the crucial AGs most associated with AD: IGF1R, MXI1, RB1, PPARA, NFE2L2, STAT5B, FOS, PRKCD, YWHAZ, HTT, MAPK9, HSPA9, SDHC, PRKDC, and PDPK1. This 15-gene model performed well in discriminating AD from NC samples. Among them, IGF1R, MXI1, PPARA, YWHAZ, and MAPK9 strongly correlated with pathologic progression in AD, were identified as critical regulators of AD. Although most AGs showed similar trends of expression changes in different types of NVU cells in AD, certain AGs were expressed in a cell-specific manner. Our comprehensive analysis of brain NVU from patients with AD reveals previously unknown molecular changes associated with aging that may underlie the functional dysregulation of NVU, providing important insights for exploring potential cell-specific therapeutic targets to restore brain homeostasis in AD.

15.
Front Cardiovasc Med ; 8: 778674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004893

RESUMEN

Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.

16.
Front Cardiovasc Med ; 8: 733985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692785

RESUMEN

Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.

17.
Front Cell Dev Biol ; 9: 699374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262910

RESUMEN

Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.

18.
Aging Dis ; 12(8): 1948-1963, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34881079

RESUMEN

High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.

19.
Ageing Res Rev ; 72: 101480, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34601136

RESUMEN

Vascular aging is a major cause of morbidity and mortality in the elderly population. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), forming the intima and media layers of the vessel wall respectively, are closely associated with the process of vascular aging and vascular aging-related diseases. Numerous studies have revealed the pathophysiologic mechanism through which lncRNA contributes to vascular aging, hence more attention is now paid to the role played by antisense long non-coding RNA (AS-lncRNA) in the pathogenesis of vascular aging. Nonetheless, only a small number of studies focus on the specific mechanism through which AS-lncRNA mediates vascular aging. In this review, we summarize the roles and functions of AS-lncRNA with regards to the development of vascular aging and vascular aging-related disease. We also aim to deepen our understanding of this process and provide alternative therapeutic modalities for vascular aging-related diseases.


Asunto(s)
ARN Largo no Codificante , Anciano , Envejecimiento/genética , Células Endoteliales , Humanos , Músculo Liso Vascular , Miocitos del Músculo Liso , ARN Largo no Codificante/genética
20.
Aging Dis ; 12(5): 1323-1336, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34341711

RESUMEN

Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA