Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772369

RESUMEN

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Vectores Genéticos/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/citología , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Línea Celular , Transcripción Genética
2.
Nature ; 623(7986): 387-396, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914931

RESUMEN

Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold-Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses-hypotension, bradycardia and suppressed respiration-and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push-pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.


Asunto(s)
Corazón , Reflejo , Células Receptoras Sensoriales , Síncope , Nervio Vago , Humanos , Área Postrema , Bradicardia/complicaciones , Bradicardia/fisiopatología , Gasto Cardíaco Bajo/complicaciones , Gasto Cardíaco Bajo/fisiopatología , Ecocardiografía , Corazón/fisiología , Frecuencia Cardíaca , Hipotensión/complicaciones , Hipotensión/fisiopatología , Flujometría por Láser-Doppler , Red Nerviosa , Reflejo/fisiología , Células Receptoras Sensoriales/fisiología , Análisis de Expresión Génica de una Sola Célula , Síncope/complicaciones , Síncope/etiología , Nervio Vago/citología , Nervio Vago/fisiología
3.
BMC Cardiovasc Disord ; 21(1): 15, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407161

RESUMEN

BACKGROUND: Berry syndrome, a rare combination of cardiac anomalies, consists of aortopulmonary window (APW); aortic origin of the right pulmonary artery; interrupted aortic arch (IAA) or hypoplastic aortic arch or coarctation of the aorta; and an intact ventricular septum. There is lack of review articles that elucidate the clinical features, diagnosis, treatment, and outcomes of Berry syndrome. This publication systematically reviews the 89 cases published since 1982 on Berry syndrome. CASE PRESENTATION: A 38-year-old woman presented with a loud murmur and cyanosis. Transthoracic echocardiography demonstrated a severely dilated aorta and main pulmonary artery with a large intervening defect. Distal to the APW, the ascending aorta gave rise to the right pulmonary artery. Additionally, a type A IAA, an intact ventricular septum, and a large patent ductus arteriosus were revealed. Computed tomography angiography with 3-dimensional reconstruction confirmed above findings. This is the first report of a patient of this age with Berry syndrome who did not undergo surgery. CONCLUSIONS: Berry syndrome is a rare but well-identified and surgically correctable anomaly. Patients with Berry syndrome should be followed up for longer periods to better characterize long-term outcomes.


Asunto(s)
Anomalías Múltiples/diagnóstico por imagen , Cardiopatías Congénitas/diagnóstico por imagen , Imagen Multimodal , Anomalías Múltiples/fisiopatología , Adulto , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Cianosis/etiología , Ecocardiografía Doppler en Color , Femenino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/fisiopatología , Humanos , Valor Predictivo de las Pruebas , Pronóstico , Síndrome
4.
Front Pharmacol ; 15: 1341020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469403

RESUMEN

Introduction: Yinchenzhufu decoction (YCZFD) is a traditional Chinese medicine formula with hepatoprotective effects. In this study, the protective effects of YCZFD against cholestatic liver fibrosis (CLF) and its underlying mechanisms were evaluated. Methods: A 3, 5-diethoxycarbonyl-1, 4-dihydro-collidine (DDC)-induced cholestatic mouse model was used to investigate the amelioration of YCZFD on CLF. Data-independent acquisition-based mass spectrometry was performed to investigate proteomic changes in the livers of mice in three groups: control, model, and model treated with high-dose YCZFD. The effects of YCZFD on the expression of key proteins were confirmed in mice and cell models. Results: YCZFD significantly decreased the levels of serum biochemical, liver injury, and fibrosis indicators of cholestatic mice. The proteomics indicated that 460 differentially expressed proteins (DEPs) were identified among control, model, and model treated with high-dose YCZFD groups. Enrichment analyses of these DEPs revealed that YCZFD influenced multiple pathways, including PI3K-Akt, focal adhesion, ECM-receptor interaction, glutathione metabolism, and steroid biosynthesis pathways. The expression of platelet derived growth factor receptor beta (PDGFRß), a receptor associated with the PI3K/AKT and focal adhesion pathways, was upregulated in the livers of cholestatic mice but downregulated by YCZFD. The effects of YCZFD on the expression of key proteins in the PDGFRß/PI3K/AKT pathway were further confirmed in mice and transforming growth factor-ß-induced hepatic stellate cells. We uncovered seven plant metabolites (chlorogenic acid, scoparone, isoliquiritigenin, glycyrrhetinic acid, formononetin, atractylenolide I, and benzoylaconitine) of YCZFD that may regulate PDGFRß expression. Conclusion: YCZFD substantially protects against DDC-induced CLF mainly through regulating the PDGFRß/PI3K/AKT signaling pathway.

5.
Nat Commun ; 14(1): 5809, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726316

RESUMEN

Shotgun proteomics is essential for protein identification and quantification in biomedical research, but protein isoform characterization is challenging due to the extensive number of peptides shared across proteins, hindering our understanding of protein isoform regulation and their roles in normal and disease biology. We systematically assess the challenge and opportunities of shotgun proteomics-based protein isoform characterization using in silico and experimental data, and then present SEPepQuant, a graph theory-based approach to maximize isoform characterization. Using published data from one induced pluripotent stem cell study and two human hepatocellular carcinoma studies, we demonstrate the ability of SEPepQuant in addressing the key limitations of existing methods, providing more comprehensive isoform-level characterization, identifying hundreds of isoform-level regulation events, and facilitating streamlined cross-study comparisons. Our analysis provides solid evidence to support a widespread role of protein isoform regulation in normal and disease processes, and SEPepQuant has broad applications to biological and translational research.


Asunto(s)
Investigación Biomédica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteómica , Isoformas de Proteínas/genética
6.
bioRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790302

RESUMEN

Systematic analysis of gene function across diverse cell types in vivo is hindered by two challenges: obtaining sufficient cells from live tissues and accurately identifying each cell's perturbation in high-throughput single-cell assays. Leveraging AAV's versatile cell type tropism and high labeling capacity, we expanded the resolution and scale of in vivo CRISPR screens: allowing phenotypic analysis at single-cell resolution across a multitude of cell types in the embryonic brain, adult brain, and peripheral nervous system. We undertook extensive tests of 86 AAV serotypes, combined with a transposon system, to substantially amplify labeling and accelerate in vivo gene delivery from weeks to days. Using this platform, we performed an in utero genetic screen as proof-of-principle and identified pleiotropic regulatory networks of Foxg1 in cortical development, including Layer 6 corticothalamic neurons where it tightly controls distinct networks essential for cell fate specification. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% (mediated by lentivirus), and achieve analysis of over 30,000 cells in one experiment, thus enabling massively parallel in vivo Perturb-seq. Compatible with various perturbation techniques (CRISPRa/i) and phenotypic measurements (single-cell or spatial multi-omics), our platform presents a flexible, modular approach to interrogate gene function across diverse cell types in vivo, connecting gene variants to their causal functions.

7.
Natl Sci Rev ; 10(8): nwad167, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575948

RESUMEN

Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.

8.
Neuron ; 109(23): 3823-3837.e6, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624220

RESUMEN

The lateral hypothalamic area (LHA) regulates feeding- and reward-related behavior, but because of its molecular and anatomical heterogeneity, the functions of defined neuronal populations are largely unclear. Glutamatergic neurons within the LHA (LHAVglut2) negatively regulate feeding and appetitive behavior. However, this population comprises transcriptionally distinct and functionally diverse neurons that project to diverse brain regions, including the lateral habenula (LHb) and ventral tegmental area (VTA). To resolve the function of distinct LHAVglut2 populations, we systematically compared projections to the LHb and VTA using viral tracing, single-cell sequencing, electrophysiology, and in vivo calcium imaging. LHAVglut2 neurons projecting to the LHb or VTA are anatomically, transcriptionally, electrophysiologically, and functionally distinct. While both populations encode appetitive and aversive stimuli, LHb projecting neurons are especially sensitive to satiety state and feeding hormones. These data illuminate the functional heterogeneity of LHAVglut2 neurons, suggesting that reward and aversion are differentially processed in divergent efferent pathways.


Asunto(s)
Habénula , Área Hipotalámica Lateral , Ácido Glutámico/metabolismo , Habénula/fisiología , Área Hipotalámica Lateral/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Área Tegmental Ventral/metabolismo
9.
Neuron ; 106(5): 743-758.e5, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32272058

RESUMEN

The habenula complex is appreciated as a critical regulator of motivated and pathological behavioral states via its output to midbrain nuclei. Despite this, transcriptional definition of cell populations that comprise both the medial habenular (MHb) and lateral habenular (LHb) subregions in mammals remain undefined. To resolve this, we performed single-cell transcriptional profiling and highly multiplexed in situ hybridization experiments of the mouse habenula complex in naive mice and those exposed to an acute aversive stimulus. Transcriptionally distinct neuronal cell types identified within the MHb and LHb, were spatially defined, differentially engaged by aversive stimuli, and had distinct electrophysiological properties. Cell types identified in mice also displayed a high degree of transcriptional similarity to those previously described in zebrafish, highlighting the well-conserved nature of habenular cell types across the phylum. These data identify key molecular targets within habenular cell types and provide a critical resource for future studies.


Asunto(s)
Habénula/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Habénula/citología , Ratones , Microglía/citología , Microglía/metabolismo , Neuroglía/citología , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , RNA-Seq , Análisis de la Célula Individual , Pez Cebra
10.
Med Oncol ; 32(8): 215, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26163148

RESUMEN

FBXW7 gene (F-box and WD-40 domain protein 7) is also named HCDC4 and is a significant tumor suppressor gene, which can regulate human cell cycle, proliferation and differentiation. In this study, we tend to investigate protein expression and related biological functions of FBXW7 gene. FBXW7 expression level in renal cell carcinoma (RCC) tissues is highly related to its clinical pathologic grade (P = 0.0094) and TNM phase (P = 0.0080) and is highly lower than in paracancerous normal tissues through immunohistochemistry study. FBXW7 high-expression patients have overall better prognosis than low-expression patients (P < 0.001). After transfected with FBXW7 plasmid, the RCC cell lines ACHN and A704 showed a depressed proliferation activity and high proportion of apoptosis through CCK8, colony formation and flow cytometry assay studies. By Western blot analysis, expression of cell proliferation-activating protein c-Myc and c-Jun is downregulated in FBXW7 high-expression RCC compared with negative control. These data suggested that FBXW7 is a significant tumor suppressor gene in RCC.


Asunto(s)
Carcinoma de Células Renales/patología , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Ubiquitina-Proteína Ligasas/genética , Apoptosis/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA