Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 73(4): 815-829.e7, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30772174

RESUMEN

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which is a highly heterogeneous process. Here we report the cell fate continuum during somatic cell reprogramming at single-cell resolution. We first develop SOT to analyze cell fate continuum from Oct4/Sox2/Klf4- or OSK-mediated reprogramming and show that cells bifurcate into two categories, reprogramming potential (RP) or non-reprogramming (NR). We further show that Klf4 contributes to Cd34+/Fxyd5+/Psca+ keratinocyte-like NR fate and that IFN-γ impedes the final transition to chimera-competent pluripotency along the RP cells. We analyze more than 150,000 single cells from both OSK and chemical reprograming and identify additional NR/RP bifurcation points. Our work reveals a generic bifurcation model for cell fate decisions during somatic cell reprogramming that may be applicable to other systems and inspire further improvements for reprogramming.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Técnicas de Reprogramación Celular , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Embrionarias de Ratones/fisiología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Células Madre Embrionarias de Ratones/metabolismo , Fenotipo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Am Chem Soc ; 146(8): 5295-5304, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363710

RESUMEN

Unveiling the mechanism behind chirality propagation and dissymmetry amplification at the molecular level is of significance for the development of chiral systems with comprehensively outstanding chiroptical performances. Herein, we have presented a straightforward Cu-mediated Ullmann homocoupling approach to synthesize perylene diimide-entwined double π-helical nanoribbons encompassing dimer, trimer, and tetramer while producing homochiral or heterochiral linking of chiral centers. A significant dissymmetry amplification was achieved, with absorption dissymmetry factors (|gabs|) increasing from 0.009 to 0.017 and further to 0.019, and luminescence dissymmetry factors (|glum|) rising from 0.007 to 0.013 and eventually to 0.015 for homochiral double π-helical oligomers. The disparity of magnetic transition dipole moment (m) densities in homochiral and heterochiral tetramers by time-dependent density functional theory calculations confirmed that homochiral oligomerization can maximize the total m, which is favorable for achieving ever-increasing g factors. Notably, these double π-helices exhibited exceptional photoluminescence quantum yields (ΦPL) ranging from 83 to 95%. The circularly polarized luminescence brightness (BCPL) eventually reached a remarkable 575 M-1 cm-1 for the homochiral tetramer, which is among the highest values reported for chiral small molecules. This kind of linearly extended double π-helices offers a platform for a comprehensive understanding of the mechanism behind chirality propagation and dissymmetry amplification.

3.
J Am Chem Soc ; 146(19): 13499-13508, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696816

RESUMEN

Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (µ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.

4.
Anal Chem ; 96(19): 7602-7608, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38671546

RESUMEN

Molecular imprinting techniques have attracted a lot of attention as a potential biomimetic technology, but there are still challenges in protein imprinting. Herein, multifunctional nanosized molecularly imprinted polymers (nanoMIPs) for human angiotensin-converting enzyme 2 (ACE2) were prepared by epitope imprinting of magnetic nanoparticles-anchored peptide (magNP-P) templates, which were further applied to construct a competitive displacement fluorescence assay toward ACE2. A cysteine-flanked dodecapeptide sequence was elaborately selected as an epitope for ACE2, which was immobilized onto the surface of magnetic nanoparticles and served as a magNP-P template for imprinting. During polymerization, fluorescent monomers were introduced to endow fluorescence responsiveness to the prepared self-signaling nanoMIPs. A competitive displacement fluorescence assay based on the nanoMIPs was established and operated in a washing-free manner, yielding a wide range for ACE2 (0.1-6.0 pg/mL) and a low detection limit (0.081 pg/mL). This approach offers a promising avenue in the preparation of nanoMIPs for macromolecule recognition and expands potential application of an MIP in the detection of proteins as well as peptides.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/química , Impresión Molecular , Nanopartículas de Magnetita/química , Polímeros Impresos Molecularmente/química , Límite de Detección , Péptidos/química , Péptidos/metabolismo
5.
Anal Chem ; 96(24): 9953-9960, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850235

RESUMEN

In traditional luminol electrochemiluminescence (ECL) systems, hydrogen peroxide (H2O2) and dissolved oxygen (DO) are the commonly used coreactants to generate reactive oxygen species (ROS) for ECL emission. However, the self-decomposition of hydrogen peroxide and the limited solubility and content of oxygen in solution undoubtedly restrict the luminescence efficiency and stability of the luminol ECL system. Inspired by the ROS-mediated ECL mechanism, we pioneered hydroxide ion as an advanced luminol ECL coreactant using nickel-doped and carbon nanotube-modified tungsten oxide (Ni-WOx-CNT) as the coreactant accelerator. Owing to the excellent catalytic activity of Ni-WOx-CNT, amounts of ROS were generated from OH- at a low excitation voltage, which subsequently reacted with luminol anion radicals and triggered intense ECL signals. Experiments confirmed an impressive ECL behavior in terms of high luminescent intensity (85,563 a.u.) and super stability over 1300 consecutive tests; both are superior to those recently reported luminol-H2O2 and luminol-DO systems with smaller ECL intensities and consecutive tests less than 25 times. To validate the feasibility and versatility of the developed system in sensor, traditional three-electrodes system and closed bipolar electrodes system with various sensing strategies of direct oxidation, "gate-effect" of molecularly imprinted polymer, immune reaction, and enzyme-catalyzed reaction were proposed to monitor uric acid (UA), C-reactive protein (CRP), immunoglobulin G (IgG), and glucose (Glu). The superior sensing performances confirmed the great application potential of the developed ROS-mediated ECL system.

6.
Opt Lett ; 49(7): 1790-1793, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560864

RESUMEN

This study proposes a high-sensitivity resonant graphene accelerometer based on a pressure-induced sensing mechanism. The accelerometer design encompasses an optical fiber and a vacuum-sealed graphene resonator affixed to a silicon sensitive film, incorporating a proof mass. This indirect sensing mechanism effectively mitigates the vibration mode aliasing of graphene and the proof mass while ensuring a minimal energy loss in the operating resonator. The mechanical vibration of graphene is excited and detected through an all-fiber optical system. Notably, the proposed sensor demonstrates a sensitivity of 34.3 kHz/g within the range of 0-3.5 g, which is eight times higher than comparable accelerometers utilizing a proof mass on a graphene membrane. This work exhibits a novel, to the best of our knowledge, approach to an acceleration measurement using 2D resonators, exhibiting distinct advantages in terms of compact size and heightened sensitivity.

7.
Clin Sci (Lond) ; 137(16): 1297-1309, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37551616

RESUMEN

Diabetic cardiomyopathy (DCM) is a chronic metabolic disease with few effective therapeutic options. Immunoproteasome is an inducible proteasome that plays an important role in the regulation of many cardiovascular diseases, while its role in DCM remains under discussion. The present study aims to demonstrate whether inhibiting immunoproteasome subunit low molecular weight polypeptide 7 (LMP7) could alleviate DCM. Here, we established a type I diabetes mellitus mouse model by streptozotocin (STZ) in 8-week-old male wild-type C57BL/6J mice. We found that immunoproteasome subunit LMP7 was overexpressed in the heart of diabetic mice, while inhibiting LMP7 with pharmacological inhibitor ONX0914 significantly alleviated myocardial fibrosis and improved cardiac function. Besides, compared with diabetic mice, ONX0914 treatment reduced protein levels of mesenchymal markers (Vimentin, α-smooth muscle actin, and SM22α) and increased endothelial markers (VE-cadherin and CD31). In TGFß1 stimulated HUVECs, we also observed that ONX0914 could inhibit endothelial-mesenchymal transition (EndMT). Mechanistically, we prove that ONX0914 could regulate autophagy activity both in vivo and vitro. Meanwhile, the protective effect of ONX0914 on TGFß1 stimulated HUVECs could be abolished by 3-methyladenine (3MA) or hydroxychloroquine (CQ). All in all, our data highlight that inhibition of LMP7 with ONX0914 could ameliorate EndMT in diabetic mouse hearts at least in part via autophagy activation. Thus, LMP7 may be a potential therapeutic target for the DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Masculino , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Ratones Endogámicos C57BL , Peso Molecular , Péptidos
8.
J Surg Res ; 281: 264-274, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219938

RESUMEN

INTRODUCTION: Persistent lung inflammation is a characteristic of sepsis-induced lung injury. Matrine, the active ingredient from Sophora flavescens, has exhibited anti-inflammatory activities. This study investigated the effects of prophylactic administration of matrine on macrophage polarization, apoptosis, and tissue injury in a cecal ligation and puncture (CLP)-induced murine lung injury model. METHODS: Mice were randomly allocated into four groups: Sham, CLP, Sham + Matrine, and CLP + Matrine. Lung tissues were collected at 24 h post-CLP. Histopathology and immunofluorescence analysis were performed to evaluate lung injury and macrophage infiltration in the lung, respectively. Caspase-3 activities, TUNEL staining, and anti-apoptotic proteins were examined to assess apoptosis. To determine the mechanism of action of matrine, protein levels of Sirtuin 1 (SIRT1), nuclear factor κB (NF-κB), p53 and the messenger RNA levels of p53-mediated proapoptotic genes were examined to elucidate the associated signaling pathways. RESULTS: Histopathological evaluation showed that matrine prophylaxis attenuated sepsis-induced lung injury. Matrine prophylaxis attenuated sepsis-induced infiltration of the total population of macrophages in the lung. Matrine inhibited M1 macrophage infiltration, but increased M2 macrophage infiltration, thus resulting in a decrease in the proportion of M1 to M2 macrophages in septic lung. Sepsis-induced lung injury was associated with apoptotic cell death as evidenced by increases in caspase-3 activity, TUNEL-positive cells, and decreases in antiapoptotic proteins, all of which were reversed by matrine prophylaxis. Matrine restored sepsis-induced downregulation of SIRT1 and deacetylation of NF-κB p65 subunit and p53, thus inactivating NF-κB pathway and suppressing p53-induced proapoptotic pathway in septic lung. CONCLUSIONS: In summary, this study demonstrated that matrine exhibited pro-M2 macrophage polarization and antiapoptotic effects in sepsis-induced lung injury, which might be, at least partly, due to the modulation of SIRT1/NF-κB and SIRT1/p53 pathways.


Asunto(s)
Lesión Pulmonar , Sepsis , Animales , Ratones , Apoptosis , Caspasa 3/metabolismo , Lesión Pulmonar/complicaciones , Macrófagos/metabolismo , FN-kappa B/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor , Matrinas
9.
Angew Chem Int Ed Engl ; 62(1): e202214769, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36357324

RESUMEN

Despite the great progress in research on molecular carbons containing multiple helicenes around one core, realizing the stereoselectivity of carbons containing multiple helicenes around more cores is still a great challenge. Herein, molecular carbon C204 featuring 12-fold [5]helicenes around four cores was successfully constructed by using nine perylene diimide (PDI) units, and exhibits good solubility and stability. Despite 256 possible stereoisomers caused by the 12-fold [5]helicenes, we only obtained one pair of enantiomers with D3 symmetry. There are four possible pairs of enantiomers with D3 symmetry, namely 7A, 7B, 7C and 7D. Theoretical and experimental results verify that the obtained structure belongs to 7C, which has the lowest energy. The enantiomers can also be separated by chiral HPLC. These results suggest that choosing PDIs as building blocks can not only improve the solubility and stability but also realize the stereoselectivity and chirality of molecular carbons.

10.
J Am Chem Soc ; 144(25): 11397-11404, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35715213

RESUMEN

Design challenges in the development of circularly polarized luminescence (CPL) materials are focused on balancing the luminescence dissymmetry factor (glum) and photoluminescence quantum yield (ΦPL) by regulating the electric (µ) and magnetic (m) transition dipole moment vectors. Aiming at designing efficient CPL emitters and clarifying the chiroptical variation mechanism, herein, we present a double π-helix based on a cyclooctatetraene-embedded perylene diimide dimer that combines chirality with molecular entanglement and very high barriers for racemization. Through finely regulating the magnitudes of µ and m, the maximal dissymmetry factors |gabs| and |glum| can be boosted to 0.035 and 0.030, respectively, as revealed by circular dichroism (CD) and CPL spectra. The results indicate a 3-fold improvement of g values and a modulated ΦPL from 1a, 4, to 5 by nitrogen heteroannulation at the bay region. The CPL brightness (BCPL) of 5 reaches a recorded value of up to 573.4 M-1 cm-1, among the highest values of chiral small molecules reported so far. This work has provided a comprehensive insight into a new class of chiral materials with high CPL activities, further laying molecular fundamentals for chiral optoelectronics.


Asunto(s)
Luminiscencia , Dicroismo Circular
11.
FASEB J ; 35(9): e21823, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34396581

RESUMEN

Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Condicionamiento Físico Animal/fisiología , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Caspasa 3/metabolismo , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/fisiopatología , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/metabolismo , Transducción de Señal/fisiología
12.
Horm Metab Res ; 54(11): 760-767, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055279

RESUMEN

The prognostic implications and physiological effect of LINC02875 are unknown in hepatocellular carcinoma (HCC). We sought to examine the prognostic value of LINC02875 in HCC and assessed its role in HCC cellular function. LINC02875 expression was evaluated by RT-qPCR in HCC specimens and cell lines. LINC02875 expression was subjected to assess the correlation with clinical parameters by Chi-squared test and overall survival by Kaplan - Meier curve and Cox regression analysis. The effects of LINC02875 on the biological characteristics of HCC cells were studied by MTS and Transwell assay. LINC02875 was high-expressed in HCC, and this was associated with unfavorable clinical features and poor prognosis of HCC, especially HBV-related HCC. Knockdown of LINC02875 inhibited the proliferation, migration, and invasion of HCC cells. miR-485-5p was a downstream microRNA of LINC02875. LINC02875 affects the prognosis of HCC patients, especially HBV-related ones. LINC02875 represents a suitable therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Regulación hacia Arriba/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proliferación Celular/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico
13.
Cell Mol Life Sci ; 78(15): 5847-5863, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34181046

RESUMEN

Human induced pluripotent stem cells (iPSCs) technology has been widely applied to cell regeneration and disease modeling. However, most mechanism of somatic reprogramming is studied on mouse system, which is not always generic in human. Consequently, the generation of human iPSCs remains inefficient. Here, we map the chromatin accessibility dynamics during the induction of human iPSCs from urine cells. Comparing to the mouse system, we found that the closing of somatic loci is much slower in human. Moreover, a conserved AP-1 motif is highly enriched among the closed loci. The introduction of AP-1 repressor, JDP2, enhances human reprogramming and facilitates the reactivation of pluripotent genes. However, ESRRB, KDM2B and SALL4, several known pluripotent factors promoting mouse somatic reprogramming fail to enhance human iPSC generation. Mechanistically, we reveal that JDP2 promotes the closing of somatic loci enriching AP-1 motifs to enhance human reprogramming. Furthermore, JDP2 can rescue reprogramming deficiency without MYC or KLF4. These results indicate AP-1 activity is a major barrier to prevent chromatin remodeling during somatic cell reprogramming.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Proteínas F-Box/metabolismo , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362166

RESUMEN

Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.


Asunto(s)
Cardiotoxinas , Enfermedades Musculares , Ratones , Animales , Cardiotoxinas/toxicidad , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Macrófagos/metabolismo , Envejecimiento
15.
Sheng Li Xue Bao ; 74(4): 585-595, 2022 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-35993210

RESUMEN

The purpose of this study was to establish a three-dimensional (3D) organoid culture system for type 2 alveolar epithelial (AT2) cells in mice. AT2 cells were isolated from ICR mouse lung and purified by enzymatic digestion and MicroBeads sorting. The purity of AT2 cells was determined by immunofluorescence (IF) staining using an antibody against proSPC. The AT2 differentiation was examined by IF staining with proSPC/HopX and proSPC/T1α antibodies, and proliferation of AT2 cells was assessed by EdU incorporation assays after two-dimensional (2D) culture for 8 days. In addition, AT2 cells were co-cultured with mouse lung fibroblasts (Mlg) in three-dimensional (3D) culture system. After 13 days of co-culture, the organoids were fixed in 2% paraformaldehyde for histological analysis and IF staining. The results showed that the purity of the AT2 cells was over 95%, as assessed by proSPC staining. 2D cultured AT2 cells were negative for EdU staining, which indicates that no proliferation occurs. proSPC expression was gradually disappeared, whereas T1α and HopX expression was gradually increased after 3, 5 and 8 days of culture. In 3D culture system, the alveolar organoids were formed after co-culturing AT2 cells with Mlg for 4 days. Histological analysis showed that alveolar organoids displayed a hollow morphology. proSPC was highly expressed in the peripheral cells, whereas type 1 alveolar epithelial (AT1) cells transdifferentiated from AT2 cells expressing HopX were mainly located in the interior of organoid bodies after 13 days. Some of the proSPC-positive AT2 cells located in the outer circle of alveolar organoids were stained positive for both proSPC and EdU, indicating that the AT2 cells in the alveolar organoids were proliferative. These results showed that the 3D organoid culture system of mouse AT2 cells was successfully established.


Asunto(s)
Células Epiteliales Alveolares , Organoides , Células Epiteliales Alveolares/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células Epiteliales , Pulmón , Ratones , Ratones Endogámicos ICR
16.
J Cell Mol Med ; 25(8): 4124-4135, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624364

RESUMEN

Thrombocytopenia is independently related with increased mortality in severe septic patients. Renin-angiotensin system (RAS) is elevated in septic subjects; accumulating studies show that angiotensin II (Ang II) stimulate the intrinsic apoptosis pathway by promoting reactive oxygen species (ROS) production. However, the mechanisms underlying the relationship of platelet apoptosis and RAS system in sepsis have not been fully elucidated. The present study aimed to elucidate whether the RAS was involved in the pathogenesis of sepsis-associated thrombocytopenia and explore the underlying mechanisms. We found that elevated plasma Ang II was associated with decreased platelet count in both patients with sepsis and experimental animals exposed to lipopolysaccharide (LPS). Besides, Ang II treatment induced platelet apoptosis in a concentration-dependent manner in primary isolated platelets, which was blocked by angiotensin II type 1 receptor (AT1R) antagonist losartan, but not by angiotensin II type 2 receptor (AT2R) antagonist PD123319. Moreover, inhibiting AT1R by losartan attenuated LPS-induced platelet apoptosis and alleviated sepsis-associated thrombocytopenia. Furthermore, Ang II treatment induced oxidative stress level in a concentration-dependent manner in primary isolated platelets, which was partially reversed by the AT1R antagonist losartan. The present study demonstrated that elevated Ang II directly stimulated platelet apoptosis through promoting oxidative stress in an AT1R-dependent manner in sepsis-associated thrombocytopenia. The results would helpful for understanding the role of RAS system in sepsis-associated thrombocytopenia.


Asunto(s)
Angiotensina II/farmacología , Apoptosis , Plaquetas/patología , Estrés Oxidativo , Receptor de Angiotensina Tipo 1/metabolismo , Sepsis/complicaciones , Trombocitopenia/patología , Adulto , Anciano , Anciano de 80 o más Años , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/genética , Transducción de Señal , Trombocitopenia/etiología , Trombocitopenia/metabolismo
17.
BMC Womens Health ; 21(1): 284, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348700

RESUMEN

BACKGROUND: Adenomyoepithelioma (AME) of the breast is a rare subtype of breast tumor. Most of AMEs reported are solid, however, cystic or prominent cystic changes are extremely rare. CASE PRESENTATION: A 51-year-old woman presented a lump in the upper outer quadrant of right breast, and it was accompanied by continuous breast pain and bilateral axillary itching for more than 2 months. There were no other symptoms found. Preoperative mammography and ultrasound examination were performed. Mammography showed a noncalcified lobulated mass, and it was considered to be a benign cyst with septum on ultrasound, but ductal carcinoma of breast, adenoid cystic carcinoma could not be excluded. At first, AME was not considered preoperatively, because the imaging features of this rare tumor may vary widely, which may result in an incorrect diagnosis. But eventually, AME was diagnosed by postoperative pathology and immunohistochemistry. CONCLUSION: We herein present a rare case of breast AME with prominent cystic changes. AME has no-specific imaging features, but the benign or malignant nature of the lesion might be suspected on imaging.


Asunto(s)
Adenomioepitelioma , Neoplasias de la Mama , Carcinoma Adenoide Quístico , Adenomioepitelioma/diagnóstico por imagen , Adenomioepitelioma/cirugía , Mama/diagnóstico por imagen , Mama/cirugía , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad
18.
Angew Chem Int Ed Engl ; 60(35): 19018-19023, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105225

RESUMEN

A novel kind of monocyclic and dicyclic dehydro[20]annulenes exhibiting specific sizes and topologies from regioselective unilateral ortho-diethynyl PDI, is developed by Cu-catalyzed Glaser-Hay homo-coupling and cross-coupling. Through the integration of electron-deficient PDI chromophores into the dehydroannulene scaffolding, these macrocycles exhibit intense and characteristic absorption properties and the degenerated LUMO levels. The single-crystal X-ray diffraction analysis unambiguously revealed unique porous supramolecular structures, which display micropore characteristics with surface area of 120.74 m2 g-1 . A moderate electron mobility of 0.05 cm2 V-1 s-1 for chlorine-free dehydro[20]annulene based on micrometer-sized single-crystalline transistors was witnessed. The porous and yet semiconducting features signify the prospects of PDI-integrated dehydroannulenes in organic optoelectronics.

19.
Med Sci Monit ; 26: e921769, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32235821

RESUMEN

BACKGROUND Pancreatic cancer (PAC) is a lethal cancer and it is essential to develop accurate diagnostic and prognostic biomarkers for PAC. MATERIAL AND METHODS An integrated microarray analysis of PAC was conducted to identify differentially expressed genes (DEGs) between PAC and non-tumor controls. Expression of DEGs were further confirmed by The Cancer Genome Atlas and the Genotype-Tissue Expression. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and protein-protein integration network construction were performed to further research the biological functions of DEGs. Receiver-operating characteristic analysis and survival analysis were used to evaluate the diagnostic and prognostic value of DEGs for PAC. RESULTS Seventeen microarray datasets were downloaded from Gene Expression Omnibus to conduct the integrated microarray analysis. A total of 1136 DEGs (596 upregulated and 540 downregulated DEGs) in PAC tissues compared with non-tumor controls were identified. Pancreatic secretion (Kegg: 04972), insulin signaling pathway (Kegg: 04910), and several cancer-related pathways including pathways in cancer (Kegg: 05200), MAPK signaling pathway (Kegg: 04010), and pancreatic cancer (Kegg: 05212) were enriched for DEGs in PAC. Seven DEGs (AHNAK2, CDH3, IFI27, ITGA2, LAMB3, SLC6A14, and TMPRSS4) were found to have both great diagnostic and prognostic value for PAC. High expression of these 7 DEGs were significantly associated with poor prognosis of patients with PAC. CONCLUSIONS These 7 DEGs might be potential diagnostic and prognostic biomarkers for PAC and help uncovering the mechanism of PAC.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Pancreáticas/diagnóstico , Análisis de Matrices Tisulares/métodos , Biología Computacional , Bases de Datos Genéticas/estadística & datos numéricos , Conjuntos de Datos como Asunto , Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Pronóstico , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/genética , Análisis de Supervivencia , Regulación hacia Arriba
20.
J Cell Physiol ; 234(5): 6449-6462, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30317584

RESUMEN

Idiopathic pulmonary arterial hypertension (IPAH) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for IPAH have not been identified. The aim of this study was to explore the potential diagnostic biomarkers and possible regulatory targets of IPAH. We performed a weighted gene coexpression network analysis and calculated module-trait correlations based on a public microarray data set (GSE703) and six modules were found to be related to IPAH. Two modules which have the strongest correlation with IPAH were further analyzed and the top 10 hub genes in the two modules were identified. Furthermore, we validated the data by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent sample set originated from our study center. Overall, the qRT-PCR results were consistent with most of the results of the microarray analysis. Intriguingly, the highest change was found for YWHAB, a gene encodes a protein belonging to the 14-3-3 family of proteins, members of which mediate signal transduction by binding to phosphoserine-containing proteins. Thus, YWHAB was subsequently selected for validation. In congruent with the gene expression analysis, plasma 14-3-3ß concentrations were significantly increased in patients with IPAH compared with healthy controls, and 14-3-3ß expression was also positively correlated with mean pulmonary artery pressure ( R 2 = 0.8783; p < 0.001). Taken together, using weighted gene coexpression analysis, YWHAB was identified and validated in association with IPAH progression, which might serve as a biomarker and/or therapeutic target for IPAH.


Asunto(s)
Proteínas 14-3-3/metabolismo , Biomarcadores/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Adolescente , Adulto , Biomarcadores/análisis , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA