Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 150(2): 132-150, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557054

RESUMEN

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.


Asunto(s)
Hipertensión Pulmonar , Músculo Liso Vascular , Miocitos del Músculo Liso , Animales , Humanos , Masculino , Ratones , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR gamma/metabolismo , PPAR gamma/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Transducción de Señal , Ubiquitinación , Remodelación Vascular
2.
BMC Cardiovasc Disord ; 24(1): 349, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987688

RESUMEN

PURPOSE: Glycolysis and immune metabolism play important roles in acute myocardial infarction (AMI). Therefore, this study aimed to identify and experimentally validate the glycolysis-related hub genes in AMI as diagnostic biomarkers, and further explore the association between hub genes and immune infiltration. METHODS: Differentially expressed genes (DEGs) from AMI peripheral blood mononuclear cells (PBMCs) were analyzed using R software. Glycolysis-related DEGs (GRDEGs) were identified and analyzed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) for functional enrichment. A protein-protein interaction network was constructed using the STRING database and visualized using Cytoscape software. Immune infiltration analysis between patients with AMI and stable coronary artery disease (SCAD) controls was performed using CIBERSORT, and correlation analysis between GRDEGs and immune cell infiltration was performed. We also plotted nomograms and receiver operating characteristic (ROC) curves to assess the predictive accuracy of GRDEGs for AMI occurrence. Finally, key genes were experimentally validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting using PBMCs. RESULTS: A total of 132 GRDEGs and 56 GRDEGs were identified on the first day and 4-6 days after AMI, respectively. Enrichment analysis indicated that these GRDEGs were mainly clustered in the glycolysis/gluconeogenesis and metabolic pathways. Five hub genes (HK2, PFKL, PKM, G6PD, and ALDOA) were selected using the cytoHubba plugin. The link between immune cells and hub genes indicated that HK2, PFKL, PKM, and ALDOA were significantly positively correlated with monocytes and neutrophils, whereas G6PD was significantly positively correlated with neutrophils. The calibration curve, decision curve analysis, and ROC curves indicated that the five hub GRDEGs exhibited high predictive value for AMI. Furthermore, the five hub GRDEGs were validated by RT-qPCR and western blotting. CONCLUSION: We concluded that HK2, PFKL, PKM, G6PD, and ALDOA are hub GRDEGs in AMI and play important roles in AMI progression. This study provides a novel potential immunotherapeutic method for the treatment of AMI.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Glucólisis , Infarto del Miocardio , Mapas de Interacción de Proteínas , Humanos , Glucólisis/genética , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Infarto del Miocardio/diagnóstico , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Transcriptoma , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Valor Predictivo de las Pruebas , Masculino , Persona de Mediana Edad , Hexoquinasa/genética , Femenino , Estudios de Casos y Controles , Nomogramas , Reproducibilidad de los Resultados
3.
Artículo en Inglés | MEDLINE | ID: mdl-39205642

RESUMEN

Transcription factor 3 (TCF3), a pivotal member of the TCF/LEF family, plays a critical role in tumorigenesis. Nonetheless, its impact on the tumor microenvironment (TME) and cancer phenotypes remains elusive. We perform an exhaustive analysis of TCF3 expression, DNA variation profiles, prognostic implications, and associations with the TME and immunological aspects. This study is based on a large-scale pan-cancer cohort, encompassing over 17,000 cancer patients from multiple independent datasets, validated by in vitro assays. Our results show that TCF3/4/7 exhibits differential expression patterns between normal and tumor tissues across pan-cancer analyses. Mutational analysis of TCF3 across diverse cancer types reveals the highest alteration rates in biliary tract cancer. Additionally, mutations and single nucleotide variants in TCF3/4/7 are found to exert varied effects on patient prognosis. Importantly, TCF3 emerges as a robust predictor of survival across all cancer cohorts and among patients receiving immune checkpoint inhibitors. Elevated TCF3 expression is correlated with more aggressive cancer subtypes, as validated by immunohistochemistry and diverse cohort data. Furthermore, TCF3 expression is positively correlated with intratumoral heterogeneity and angiogenesis. In vitro investigations demonstrate that TCF3 is involved in epithelial-mesenchymal transition, migration, invasion, and angiogenesis. These effects are likely mediated through the interaction of TCF3 with the NF-κB/MMP2 pathway, which is modulated by IL-17A in human uveal melanoma MUM2B cells. This study elucidates, for the first time, the significant associations of TCF3 with DNA variation profiles, prognostic outcomes, and the TME in multiple cancer contexts. TCF3 holds promise as a molecular marker for diagnosis and as a potential target for novel therapeutic strategies, particularly in uveal melanoma.

4.
Adv Pharm Bull ; 14(2): 469-482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39206403

RESUMEN

Purpose: Neovascular age-related macular degeneration (nAMD) is a prevalent cause of blindness in the elderly. Standard treatment includes anti-vascular endothelial growth factor (anti-VEGF) drugs, such as aflibercept. However, anti-VEGF drugs may have limited efficacy and cause drug resistance. This study explores whether Kavain, an anti-inflammatory molecule from Piper methysticum, can treat choroidal neovascularization (CNV). Methods: Various experiments were conducted to assess the Kavain's toxicity. The impact of Kavain on in vitro cultured endothelial cells was examined through 5-ethynyl-20-deoxyuridine (EdU) assays, transwell migration assays, and tube formation assays. The therapeutic effects of Kavain on CNV were investigated using a laser-induced CNV mice model. To elucidate the mechanism of Kavain, network pharmacology analysis, molecular docking, and western blots were performed. Results: Kavain exhibited no apparent toxicity both in vitro and in vivo. Kavain significantly decreased endothelial cell viability, proliferation, migration, and tube formation ability in a dose-dependent manner compared to the hypoxia groups (P<0.05). Kavain alleviated CNV in the laser-induced CNV mouse model compared to the control groups (P<0.05). These effects were statistically significantly enhanced in the Kavain plus aflibercept groups (P<0.05). Following Kavain administration, the expression levels of various inflammatory factors were markedly reduced in retinal pigment epithelium (RPE)/choroid complexes (P<0.05). Mechanistically, Kavain decreased the activity of the hypoxia-inducible factor 1α (HIF-1α)/VEGF-A/ VEGF receptor 2 (VEGFR2) signaling pathway. Conclusion: Our study is the first to demonstrate Kavain's potential as a promising treatment for nAMD, owing to its dual effects of anti-inflammation and anti-angiogenesis.

5.
Sci Rep ; 6: 23289, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27021241

RESUMEN

All-solid-state high-performance asymmetric supercapacitors (ASCs) are fabricated using γ-MnS as positive electrode and porous eggplant derived activated carbon (EDAC) as negative electrode with saturated potassium hydroxide agar gel as the solid electrolyte. The laminar wurtzite nanostructure of γ-MnS facilitates the insertion of hydroxyl ions into the interlayer space, and the manganese sulfide nanowire offers electronic transportation channels. The size-uniform porous nanostructure of EDAC provides a continuous electron pathway as well as facilitates short ionic transportation pathways. Due to these special nanostructures of both the MnS and the EDAC, they exhibited a specific capacitance of 573.9 and 396 F g(-1) at 0.5 A g(-1), respectively. The optimized MnS//EDAC asymmetric supercapacitor shows a superior performance with specific capacitance of 110.4 F g(-1) and 89.87% capacitance retention after 5000 cycles, a high energy density of 37.6 Wh kg(-1) at a power density of 181.2 W kg(-1) and remains 24.9 Wh kg(-1) even at 5976 W kg(-1). Impressively, such two assembled all-solid-state cells in series can light up a red LED indicator for 15 minutes after fully charged. These impressive results make these pollution-free materials promising for practical applications in solid aqueous electrolyte-based ASCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA