Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 609(7925): 58-64, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045237

RESUMEN

Polymer membranes are widely used in separation processes including desalination1, organic solvent nanofiltration2,3 and crude oil fractionation4,5. Nevertheless, direct evidence of subnanometre pores and a feasible method of manipulating their size is still challenging because of the molecular fluctuations of poorly defined voids in polymers6. Macrocycles with intrinsic cavities could potentially tackle this challenge. However, unfunctionalized macrocycles with indistinguishable reactivities tend towards disordered packing in films hundreds of nanometres thick7-9, hindering cavity interconnection and formation of through-pores. Here, we synthesized selectively functionalized macrocycles with differentiated reactivities that preferentially aligned to create well-defined pores across an ultrathin nanofilm. The ordered structure was enhanced by reducing the nanofilm thickness down to several nanometres. This orientated architecture enabled direct visualization of subnanometre macrocycle pores in the nanofilm surfaces, with the size tailored to ångström precision by varying the macrocycle identity. Aligned macrocycle membranes provided twice the methanol permeance and higher selectivity compared to disordered counterparts. Used in high-value separations, exemplified here by enriching cannabidiol oil, they achieved one order of magnitude faster ethanol transport and threefold higher enrichment than commercial state-of-the-art membranes. This approach offers a feasible strategy for creating subnanometre channels in polymer membranes, and demonstrates their potential for accurate molecular separations.

2.
Nat Mater ; 21(4): 463-470, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35013552

RESUMEN

Membranes with high selectivity offer an attractive route to molecular separations, where technologies such as distillation and chromatography are energy intensive. However, it remains challenging to fine tune the structure and porosity in membranes, particularly to separate molecules of similar size. Here, we report a process for producing composite membranes that comprise crystalline porous organic cage films fabricated by interfacial synthesis on a polyacrylonitrile support. These membranes exhibit ultrafast solvent permeance and high rejection of organic dyes with molecular weights over 600 g mol-1. The crystalline cage film is dynamic, and its pore aperture can be switched in methanol to generate larger pores that provide increased methanol permeance and higher molecular weight cut-offs (1,400 g mol-1). By varying the water/methanol ratio, the film can be switched between two phases that have different selectivities, such that a single, 'smart' crystalline membrane can perform graded molecular sieving. We exemplify this by separating three organic dyes in a single-stage, single-membrane process.


Asunto(s)
Membranas Artificiales , Agua , Porosidad , Solventes
3.
Nat Mater ; 15(7): 760-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27135857

RESUMEN

Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed in situ by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.

4.
Nat Mater ; 19(3): 257-258, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988517
5.
Chemistry ; 21(26): 9535-43, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26012874

RESUMEN

Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2'-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2'-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, (31)P NMR spectroscopy and MS.


Asunto(s)
Oligonucleótidos/química , Compuestos Organofosforados/química , ARN/síntesis química , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Compuestos Orgánicos , ARN/química , Técnicas de Síntesis en Fase Sólida , Solventes/química
6.
Chemistry ; 20(32): 10038-51, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25043915

RESUMEN

A new strategy to access highly monodisperse, heterobifunctional linear polyethylenglycols (PEGs) has been designed. This was built around unidirectional, iterative chain extension of a 3-arm PEG homostar. A mono-(4,4'-dimethoxytriphenylmethyl) octagol building block, DmtrO-EG8-OH, was constructed from tetragol. After six rounds of chain extension, the monodisperse homostar reached the unprecedented length of 56 monomers per arm (PEG2500). The unique architecture of the synthetic platform greatly assisted in facilitating and monitoring reaction completion, overcoming kinetic limitations, chromatographic purification of intermediates, and analytical assays. After chain terminal derivatisation, mild hydrogenolytic cleavage of the homostar hub provided heterobifunctional linear EG56 chains with a hydroxyl at one end, and either a toluene sulfonate, or a tert-butyl carboxylate ester at the other. A range of heterobifunctional, monodisperse PEGs was then prepared having useful cross-linking functionalities (-OH, -COOH, -NH2, -N3) at both ends. A rapid preparation of polydisperse PEG homostars, free of multiply cross-linked chains, is also described. The above approach should be extendable to other high value oligomers and polymers.

7.
Adv Mater ; 36(1): e2300525, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37014260

RESUMEN

2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges.

8.
J Am Chem Soc ; 135(40): 15201-8, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24044635

RESUMEN

Thin-film nanocomposite membranes containing a range of 50-150 nm metal-organic framework (MOF) nanoparticles [ZIF-8, MIL-53(Al), NH2-MIL-53(Al) and MIL-101(Cr)] in a polyamide (PA) thin film layer were synthesized via in situ interfacial polymerization on top of cross-linked polyimide porous supports. MOF nanoparticles were homogeneously dispersed in the organic phase containing trimesoyl chloride prior to the interfacial reaction, and their subsequent presence in the PA layer formed was inferred by a combination of contact angle measurements, FT-IR spectroscopy, SEM, EDX, XPS, and TEM. Membrane performance in organic solvent nanofiltration was evaluated on the basis of methanol (MeOH) and tetrahydrofuran (THF) permeances and rejection of styrene oligomers (PS). The effect of different post-treatments and MOF loadings on the membrane performance was also investigated. MeOH and THF permeance increased when MOFs were embedded into the PA layer, whereas the rejection remained higher than 90% (molecular weight cutoff of less than 232 and 295 g·mol(-1) for MeOH and THF, respectively) in all membranes. Moreover, permeance enhancement increased with increasing pore size and porosity of the MOF used as filler. The incorporation of nanosized MIL-101(Cr), with the largest pore size of 3.4 nm, led to an exceptional increase in permeance, from 1.5 to 3.9 and from 1.7 to 11.1 L·m(-2)·h(-1)·bar(-1) for MeOH/PS and THF/PS, respectively.

9.
Nat Commun ; 13(1): 2809, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589719

RESUMEN

While polyamide (PA) membranes are widespread in water purification and desalination by reverse osmosis, a molecular-level understanding of the dynamics of both confined water and polymer matrix remains elusive. Despite the dense hierarchical structure of PA membranes formed by interfacial polymerization, previous studies suggest that water diffusion remains largely unchanged with respect to bulk water. Here, we employ neutron spectroscopy to investigate PA membranes under precise hydration conditions, and a series of isotopic contrasts, to elucidate water transport and polymer relaxation, spanning ps-ns timescales, and Å-nm lengthscales. We experimentally resolve, for the first time, the multimodal diffusive nature of water in PA membranes: in addition to (slowed down) translational jump-diffusion, we observe a long-range and a localized mode, whose geometry and timescales we quantify. The PA matrix is also found to exhibit rotational relaxations commensurate with the nanoscale confinement observed in water diffusion. This comprehensive 'diffusion map' can anchor molecular and nanoscale simulations, and enable the predictive design of PA membranes with tuneable performance.

10.
Science ; 377(6614): 1555-1561, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36173852

RESUMEN

Hydrocarbon separation relies on energy-intensive distillation. Membrane technology can offer an energy-efficient alternative but requires selective differentiation of crude oil molecules with rapid liquid transport. We synthesized multiblock oligomer amines, which comprised a central amine segment with two hydrophobic oligomer blocks, and used them to fabricate hydrophobic polyamide nanofilms by interfacial polymerization from self-assembled vesicles. These polyamide nanofilms provide transport of hydrophobic liquids more than 100 times faster than that of conventional hydrophilic counterparts. In the fractionation of light crude oil, manipulation of the film thickness down to ~10 nanometers achieves permeance one order of magnitude higher than that of current state-of-the-art hydrophobic membranes while retaining comparable size- and class-based separation. This high permeance can markedly reduce plant footprint, which expands the potential for using membranes made of ultrathin nanofilms in crude oil fractionation.

12.
Environ Microbiol ; 12(6): 1705-18, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20553551

RESUMEN

The structure of the extant transcriptional control network of the TOL plasmid pWW0 born by Pseudomonas putida mt-2 for biodegradation of m-xylene is far more complex than one would consider necessary from a mere engineering point of view. In order to penetrate the underlying logic of such a network, which controls a major environmental cleanup bioprocess, we have developed a dynamic model of the key regulatory node formed by the Ps/Pr promoters of pWW0, where the clustering of control elements is maximal. The model layout was validated with batch cultures estimating parameter values and its predictive capability was confirmed with independent sets of experimental data. The model revealed how regulatory outputs originated in the divergent and overlapping Ps/Pr segment, which expresses the transcription factors XylS and XylR respectively, are computed into distinct instructions to the upper and lower catabolic xyl operons for either simultaneous or stepwise consumption of m-xylene and/or succinate. In this respect, the model reveals that the architecture of the Ps/Pr is poised to discriminate the abundance of alternative and competing C sources, in particular m-xylene versus succinate. The proposed framework provides a first systemic understanding of the causality and connectivity of the regulatory elements that shape this exemplary regulatory network, facilitating the use of model analysis towards genetic circuit optimization.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Plásmidos , Pseudomonas putida , Xilenos/metabolismo , Biodegradación Ambiental , Modelos Teóricos , Estructura Molecular , Plásmidos/genética , Plásmidos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transcripción Genética , Xilenos/química
13.
ACS Appl Mater Interfaces ; 12(17): 19890-19902, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32255610

RESUMEN

Reverse osmosis membranes are used within the oil and gas industry for seawater desalination on off-shore oilrigs. The membranes consist of three layers of material: a polyester backing layer, a polysulfone support and a polyamide (PA) thin film separating layer. It is generally thought that the PA layer controls ion selectivity within the membrane but little is understood about its structure or chemistry at the molecular scale. This active polyamide layer is synthesized by interfacial polymerization at an organic/aqueous interface between m-phenylenediamine and trimesoyl chloride, producing a highly cross-linked PA polymer. It has been speculated that the distribution of functional chemistry within this layer could play a role in solute filtration. The only technique potentially capable of probing the distribution of functional chemistry within the active PA layer with sufficient spatial and energy resolution is scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS). Its use is a challenge because organic materials suffer beam-induced damage at relatively modest electron doses. Here we show that it is possible to use the N K-edge to map the active layer of a PA film using monochromated EELS spectrum imaging. The active PA layer is 12 nm thick, which supports previous neutron reflectivity data. Clear changes in the fine structure of the C K-edge across the PA films are measured and we use machine learning to assign fine structure at this edge. Using this method, we map highly heterogeneous intensity variations in functional chemistry attributed to N-C═C bonds within the PA. Similarities are found with previous molecular dynamics simulations of PA showing regions with a higher density of amide bonding as a result of the aggregation process at similar length scales. The chemical pathways that can be deduced may offer a clearer understanding of the transport mechanisms through the membrane.

14.
Science ; 369(6501): 310-315, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32675373

RESUMEN

The fractionation of crude-oil mixtures through distillation is a large-scale, energy-intensive process. Membrane materials can avoid phase changes in such mixtures and thereby reduce the energy intensity of these thermal separations. With this application in mind, we created spirocyclic polymers with N-aryl bonds that demonstrated noninterconnected microporosity in the absence of ladder linkages. The resulting glassy polymer membranes demonstrated nonthermal membrane fractionation of light crude oil through a combination of class- and size-based "sorting" of molecules. We observed an enrichment of molecules lighter than 170 daltons corresponding to a carbon number of 12 or a boiling point less than 200°C in the permeate. Such scalable, selective membranes offer potential for the hybridization of energy-efficient technology with conventional processes such as distillation.

15.
Nat Chem ; 11(2): 184, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30622342

RESUMEN

In the version of this Article originally published, the authors inadvertently cited ref. 10 in two places in the first paragraph. They would like to clarify that it should not have been cited in the sentence that starts "Polymer chemists have employed strategies such as single monomer insertion..." as it mistakenly implied that the IEG+ method described in ref. 10 could not produce unimolecular polymers; it can do so, as was demonstrated in ref. 10. The authors would also like to clarify that ref. 10 should not have been cited in the sentence that starts "Moreover, solid-phase synthesis is generally difficult to scale up...", as it implied that ref. 10 uses solid-phase synthesis; it does not, and is a purely liquid-phase process. The citation of ref. 10 has now been removed from these two sentences, but has been included elsewhere in the first two paragraphs of the Article as follows. In the first paragraph, at the end of the sentence "In iterative synthesis, specific monomers are added one at a time, or as multiples, to the end of a growing polymer chain, then reaction debris is separated from the chain extended polymer, and the cycle is repeated using the next monomer in the sequence10-12."; this sentence has been further amended to indicate multiple monomers can also be added. The reference has also been added to the end of the first sentence of the second paragraph, which starts "Consequently, liquid-phase iterative synthetic methods...", and in the third sentence of that paragraph, which now starts "For example, Johnson10, Whiting....".

16.
Nat Chem ; 11(2): 136-145, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510218

RESUMEN

Synthetic chemists have devoted tremendous effort towards the production of precision synthetic polymers with defined sequences and specific functions. However, the creation of a general technology that enables precise control over monomer sequence, with efficient isolation of the target polymers, is highly challenging. Here, we report a robust strategy for the production of sequence-defined synthetic polymers through a combination of liquid-phase synthesis and selective molecular sieving. The polymer is assembled in solution with real-time monitoring to ensure couplings proceed to completion, on a three-armed star-shaped macromolecule to maximize efficiency during the molecular sieving process. This approach is applied to the construction of sequence-defined polyethers, with side-arms at precisely defined locations that can undergo site-selective modification after polymerization. Using this versatile strategy, we have introduced structural and functional diversity into sequence-defined polyethers, unlocking their potential for real-life applications in nanotechnology, healthcare and information storage.

17.
ChemSusChem ; 12(6): 1203-1212, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30673171

RESUMEN

For the utilization of each lignin fraction in the lignin liquors, the development of separation strategies to fractionate the lignin streams by molecular weight ranges constitutes a timely challenge to be tackled. Herein, membrane filtration was applied to the refining of lignin streams obtained from a lignin-first biorefining process based on H-transfer reactions catalyzed by Raney Ni, by using 2-PrOH as a part of the lignin extraction liquor and as an H-donor. A two-stage membrane cascade was considered to separate and concentrate the monophenol-rich fraction from the liquor. Building on the results, an economic evaluation of the potential of membrane filtration for the refining of lignin streams was undertaken. In this proof-of-concept report, a detailed analysis is presented of future developments in the performance required for the utilization of membrane filtration for lignin refining and, more aspiringly, solvent reclamation.

18.
Adv Mater ; 30(15): e1705973, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29484724

RESUMEN

Thin-film composite membranes comprising a polyamide nanofilm separating layer on a support material are state of the art for desalination by reverse osmosis. Nanofilm thickness is thought to determine the rate of water transport through the membranes; although due to the fast and relatively uncontrolled interfacial polymerization reaction employed to form these nanofilms, they are typically crumpled and the separating layer is reported to be ≈50-200 nm thick. This crumpled structure has confounded exploration of the independent effects of thickness, permeation mechanism, and the support material. Herein, smooth sub-8 nm polyamide nanofilms are fabricated at a free aqueous-organic interface, exhibiting chemical homogeneity at both aqueous and organic facing surfaces. Transfer of these ultrathin nanofilms onto porous supports provides fast water transport through the resulting nanofilm composite membranes. Manipulating the intrinsic nanofilm thickness from ≈15 down to 8 nm reveals that water permeance increases proportionally with the thickness decrease, after which it increases nonlinearly to 2.7 L m-2 h-1 bar-1 as the thickness is further reduced to ≈6 nm.

19.
Chem Commun (Camb) ; (33): 3462-3, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17700882

RESUMEN

A continuous process with two separated reaction vessels provides a solution to the problems surrounding the combination of two catalysts in dynamic kinetic resolution reactions by retaining the biocatalyst in a lower temperature vessel with a microfiltration membrane and allowing the racemisation to occur efficiently in a higher temperature vessel.

20.
Chem Commun (Camb) ; (19): 2063-5, 2006 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-16767276

RESUMEN

This communication describes the enhancement of the enantioselectivity and the stability of Ru-BINAP with the ionic liquid trihexyl(tetradecyl)phosphonium chloride (CyPhos101), and the use of organic solvent nanofiltration for the efficient separation of the catalyst and ionic liquid from the hydrogenation product, followed by simultaneous recycling of the catalyst and ionic liquid.


Asunto(s)
Líquidos Iónicos/química , Compuestos Organometálicos/química , Rutenio/química , Catálisis , Filtración , Hidrogenación , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA