Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852176

RESUMEN

PURPOSE: Development of a color scheme representation to facilitate the interpretation of tri-exponential DWI data from abdominal organs, where multi-exponential behavior is more pronounced. METHODS: Multi-exponential analysis of DWI data provides information about the microstructure of the tissue under study. The tri-exponential signal analysis generates numerous parameter images that are difficult to analyze individually. Summarized color images can simplify at-a-glance analysis. A color scheme was developed in which the slow, intermediate, and fast diffusion components were each assigned to a different red, green, and blue color channel. To improve the appearance of the image, histogram equalization, gamma correction, and white balance were used, and the processing parameters were adjusted. Examples of the resulting color maps of the diffusion fractions of healthy and pathological kidney and prostate are shown. RESULTS: The color maps obtained by the presented method show the merged information of the slow, intermediate, and fast diffusion components in a single view. A differentiation of the different fractions becomes clearly visible. Fast diffusion regimes, such as in the renal hilus, can be clearly distinguished from slow fractions, such as in dense tumor tissue. CONCLUSION: Combining the diffusion information from tri-exponential DWI analysis into a single color image allows for simplified interpretation of the diffusion fractions. In the future, such color images may provide additional information about the microstructural nature of the tissue under study.

2.
Magn Reson Med ; 89(3): 1055-1067, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36416075

RESUMEN

PURPOSE: To improve the reliability of intravoxel incoherent motion (IVIM) model parameter estimation for the DWI in the kidney using a novel image downsampling expedited adaptive least-squares (IDEAL) approach. METHODS: The robustness of IDEAL was investigated using simulated DW-MRI data corrupted with different levels of Rician noise. Subsequently, the performance of the proposed method was tested by fitting bi- and triexponential IVIM model to in vivo renal DWI data acquired on a clinical 3 Tesla MRI scanner and compared to conventional approaches (fixed D* and segmented fitting). RESULTS: The numerical simulations demonstrated that the IDEAL algorithm provides robust estimates of the IVIM parameters in the presence of noise (SNR of 20) as indicated by relatively low absolute percentage bias (maximal sMdPB <20%) and normalized RMSE (maximal RMSE <28%). The analysis of the in vivo data showed that the IDEAL-based IVIM parameter maps were less noisy and more visually appealing than those obtained using the fixed D* and segmented methods. Further, coefficients of variation for nearly all IVIM parameters were significantly reduced in cortex and medulla for IDEAL-based biexponential (coefficients of variation: 4%-50%) and triexponential (coefficients of variation: 7.5%-75%) IVIM modelling compared to the segmented (coefficients of variation: 4%-120%) and fixed D* (coefficients of variation: 17%-174%) methods, reflecting greater accuracy of this method. CONCLUSION: The proposed fitting algorithm yields more robust IVIM parameter estimates and is less susceptible to poor SNR than the conventional fitting approaches. Thus, the IDEAL approach has the potential to improve the reliability of renal DW-MRI analysis for clinical applications.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Movimiento (Física) , Análisis de los Mínimos Cuadrados , Algoritmos , Riñón/diagnóstico por imagen
3.
J Magn Reson Imaging ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991093

RESUMEN

Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

4.
Metab Brain Dis ; 38(4): 1221-1238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36729261

RESUMEN

Hepatic encephalopathy (HE) is a common neurological manifestation of liver cirrhosis and is characterized by an increase of ammonia in the brain accompanied by a disrupted neurotransmitter balance, including the GABAergic and glutamatergic systems. The aim of this study is to investigate metabolic abnormalities in the cerebello-thalamo-cortical system of HE patients using GABA-edited MRS and links between metabolite levels, disease severity, critical flicker frequency (CFF), motor performance scores, and blood ammonia levels. GABA-edited MRS was performed in 35 participants (16 controls, 19 HE patients) on a clinical 3 T MRI system. MRS voxels were placed in the right cerebellum, left thalamus, and left motor cortex. Levels of GABA+ and of other metabolites of interest (glutamine, glutamate, myo-inositol, glutathione, total choline, total NAA, and total creatine) were assessed. Group differences in metabolite levels and associations with clinical metrics were tested. GABA+ levels were significantly increased in the cerebellum of patients with HE. GABA+ levels in the motor cortex were significantly decreased in HE patients, and correlated with the CFF (r = 0.73; p < .05) and motor performance scores (r = -0.65; p < .05). Well-established HE-typical metabolite patterns (increased glutamine, decreased myo-inositol and total choline) were confirmed in all three regions and were closely linked to clinical metrics. In summary, our findings provide further evidence for alterations in the GABAergic system in the cerebellum and motor cortex in HE. These changes were accompanied by characteristic patterns of osmolytes and oxidative stress markers in the cerebello-thalamo-cortical system. These metabolic disturbances are a likely contributor to HE motor symptoms in HE. In patients with hepatic encephalopathy, GABA+ levels in the cerebello-thalamo-cortical loop are significantly increased in the cerebellum and significantly decreased in the motor cortex. GABA+ levels in the motor cortex strongly correlate with critical flicker frequency (CFF) and motor performance score (pegboard test tPEG), but not blood ammonia levels (NH3).


Asunto(s)
Encefalopatía Hepática , Humanos , Encefalopatía Hepática/metabolismo , Glutamina/metabolismo , Amoníaco , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Inositol , Ácido gamma-Aminobutírico/metabolismo , Colina/metabolismo
5.
J Med Syst ; 47(1): 39, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961580

RESUMEN

Analysis of chemical exchange saturation transfer (CEST) MRI data requires sophisticated methods to obtain reliable results about metabolites in the tissue under study. CEST generates z-spectra with multiple components, each originating from individual molecular groups. The individual lines with Lorentzian line shape are mostly overlapping and disturbed by various effects. We present an elaborate method based on an adaptive nonlinear least squares algorithm that provides robust quantification of z-spectra and incorporates prior knowledge in the fitting process. To disseminate CEST to the research community, we developed software as part of this study that runs on the Microsoft Windows operating system and will be made freely available to the community. Special attention has been paid to establish a low entrance threshold and high usability, so that even less experienced users can successfully analyze CEST data.


Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Humanos , Imagen por Resonancia Magnética/métodos , Algoritmos , Análisis de los Mínimos Cuadrados
6.
J Radiol Prot ; 43(3)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37619552

RESUMEN

Although iso-centric patient positioning is enormously important in computed tomography (CT), it is complicated in thoracoabdominal imaging by the varying dimensions of the body. Patient positioning can affect the appearance of the patient on the localiser. Positioned too close to the x-ray tube, a patient appears considerably more voluminous. The goal of this study is to assess the difference in radiation exposure of combined chest and abdomen CT scans between scans with prior 0°- and 180°-localisers in conjunction with patient positioning. In this IRB-approved retrospective study, patients who had two routine thoracoabdominal CT scans on the same CT scanner, one with a prior 0°- and one with a prior 180°-localiser, were included. To evaluate the radiation exposure of the thoracoabdominal CT examination regarding the tube position during the localiser, volumetric computed tomography dose index (CTDIvol), size-specific dose estimate (SSDE), patient diameter and positioning within the iso-centre for three positions (heart, abdomen, femur level) were compared with regard to the tube position during the prior localiser. CT examinations of 114 patients were included. Despite similar patient weight and diameter between the two examinations, SSDE and CTDIvolwas significantly larger (up to 73%) with 180°-localisers. Patient offset from the iso-centre ranged between -9 mm at the centre slice (abdomen level) to -43 mm at the most caudal slice at the pelvis (femur level), causing a significant magnification (p < 0.001) on 180°-localisers with a subsequent increase of the apparent attenuation. The results of this study emphasise the use of 0°-localisers in thoracoabdominal CTs, since 180°-localisers caused patient magnification with subsequent increase in radiation exposure. The advantage of 180°-localisers, namely reducing the dose in thyroid and breast, is eliminated if the dose of the CT scan increases significantly in the abdomen and pelvis.


Asunto(s)
Exposición a la Radiación , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Tomógrafos Computarizados por Rayos X , Posicionamiento del Paciente
7.
Magn Reson Med ; 85(6): 3085-3095, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33462838

RESUMEN

PURPOSE: To assess the feasibility of measuring tubular and vascular signal fractions in the human kidney using nonnegative least-square (NNLS) analysis of intravoxel incoherent motion data collected in healthy volunteers and patients with renal pathologies. METHODS: MR imaging was performed at 3 Tesla in 12 healthy subjects and 3 patients with various kidney pathologies (fibrotic kidney disease, failed renal graft, and renal masses). Relative signal fractions f and mean diffusivities of the diffusion components in the cortex, medulla, and renal lesions were obtained using the regularized NNLS fitting of the intravoxel incoherent motion data. Test-retest repeatability of the NNLS approach was tested in 5 volunteers scanned twice. RESULTS: In the healthy kidneys, the NNLS method yielded diffusion spectra with 3 distinguishable components that may be linked to the slow tissue water diffusion, intermediate tubular and vascular flow, and fast blood flow in larger vessels with the relative signal fractions, fslow , finterm and ffast , respectively. In the pathological kidneys, the diffusion spectra varied substantially from those acquired in the healthy kidneys. Overall, the renal cyst showed substantially higher finterm and lower fslow , whereas the fibrotic kidney, failed renal graft, and renal cell carcinoma demonstrated the opposite trend. CONCLUSION: NNLS-based intravoxel incoherent motion could potentially become a valuable tool in assessing changes in tubular and vascular volume fractions under pathophysiological conditions.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Riñón , Voluntarios Sanos , Humanos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética , Movimiento (Física) , Reproducibilidad de los Resultados
8.
MAGMA ; 34(2): 241-248, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32500389

RESUMEN

OBJECTIVE: To measure sodium relaxation times and concentrations in human wrists on a clinical magnetic resonance imaging (MRI) scanner with a density-adapted radial sequence. MATERIALS AND METHODS: Sodium MRI of human wrists was conducted on a 3T MR system using a dual-tuned 1H/23Na surface coil. We performed two studies with 10 volunteers each investigating either sodium T1 (study 1) or sodium T2* (study 2) relaxation times in the radiocarpal joint (RCJ) and midcarpal joint (MCJ). Sodium concentrations of both regions were determined. RESULTS: No differences for transversal of longitudinal relaxation times were found between RCJ and MCJ (T2,s*(RCJ) = (0.9 ± 0.4) ms; T2,s*(MCJ) = (0.9 ± 0.3) ms; T2,l*(RCJ) = (14.9 ± 0.9) ms; T2,l*(MCJ) = (13.9 ± 1.1) ms; T1(RCJ) = (19.0 ± 2.4) ms; T1(MCJ) = (18.5 ± 2.1) ms). Sodium concentrations were (157.7 ± 28.4) mmol/l for study 1 and (159.8 ± 29.1) mmol/l for study 2 in the RCJ, and (172.7 ± 35.6) mmol/l for study 1 and (163.4 ± 26.3) mmol/l for study 2 in the MCJ. CONCLUSION: We successfully determined sodium relaxation times and concentrations of the human wrist on a 3T MRI scanner.


Asunto(s)
Cartílago Articular , Muñeca , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética , Sodio
9.
MAGMA ; 34(3): 389-397, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33230656

RESUMEN

OBJECTIVE: To evaluate the feasibility of in-vivo quantitative susceptibility mapping (QSM) of the human kidney. METHODS: An axial single-breath-hold 3D multi-echo sequence (acquisition time 33 s) was completed on a 3 T-MRI-scanner (Magnetom Prisma, Siemens Healthineers, Erlangen, Germany) in 19 healthy volunteers. Graph-cut-based unwrapping combined with the T2*-IDEAL approach was performed to remove the chemical shift of fat and to quantify QSM of the upper abdomen. Mean susceptibility values of the entire, renal cortex and medulla in both kidneys and the liver were determined and compared. Five subjects were measured twice to examine the reproducibility. One patient with severe renal fibrosis was included in the study to evaluate the potential clinical relevance of QSM. RESULTS: QSM was successful in 17 volunteers and the patient with renal fibrosis. Anatomical structures in the abdomen were clearly distinguishable by QSM and the susceptibility values obtained in the liver were comparable to those found in the literature. The results showed a good reproducibility. Besides, the mean renal QSM values obtained in healthy volunteers (0.04 ± 0.07 ppm for the right and - 0.06 ± 0.19 ppm for the left kidney) were substantially higher than that measured in the investigated fibrotic kidney (- 0.43 ± - 0.02 ppm). CONCLUSION: QSM of the human kidney could be a promising approach for the assessment of information about microscopic renal tissue structure. Therefore, it might further improve functional renal MR imaging.


Asunto(s)
Riñón , Imagen por Resonancia Magnética , Estudios de Factibilidad , Humanos , Hígado , Reproducibilidad de los Resultados
10.
MAGMA ; 34(2): 249-260, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32725359

RESUMEN

OBJECTIVE: To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS: Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS: The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION: In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.


Asunto(s)
Cartílago Articular , Estudios de Factibilidad , Glicosaminoglicanos , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
11.
Acta Radiol ; 62(7): 875-881, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32727212

RESUMEN

BACKGROUND: Motion correction is mandatory for the functional Fourier decomposition magnetic resonance imaging (FD-MRI) of the lungs. Therefore, it is important to evaluate the quality of various image-registration algorithms for pulmonary FD-MRI and to determine their impact on FD-MRI outcome. PURPOSE: To evaluate different image-registration algorithms for FD-MRI in functional lung imaging. MATERIAL AND METHODS: Fifteen healthy volunteers were examined in a 1.5-T whole-body MR scanner (Magnetom Avanto, Siemens AG) with a non-contrast enhanced 2D TrueFISP pulse sequence in coronal view and free-breathing (acquisition time 45 s, 250 images). Three image-registration algorithms were used to compensate the spatial variation of the lungs (fMRLung 3.0, ANTs, and Elastix). Quality control for image registration was performed by edge detection (ED), quotient image criterion (QI), and dice similarity coefficient (DSC). Ventilation, perfusion, and a ventilation/perfusion quotient (V/Q) were calculated using the three registered datasets. RESULTS: Average computing times for the three image-registration algorithms were 1.0 ± 1.6 min, 38.0 ± 13.5 min, and 354 ± 78 min for fMRLung, ANTs, and Elastix, respectively. No significant difference in the quality of motion correction provided by different image-registration algorithms occurred. Significant differences were observed between fMRLung- and Elastix-based perfusion values ​​of the left lung as well as fMRLung- and ANTs-based V/Q quotient of the right and the entire lung (P < 0.05). Other ventilation and perfusion values were not significantly different. CONCLUSION: The mandatory motion correction for functional FD-MRI of the lung can be achieved through different image-registration algorithms with consistent quality. However, a significantly difference in computing time between the image-registration algorithms still requires an optimization.


Asunto(s)
Algoritmos , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Masculino , Circulación Pulmonar/fisiología , Ventilación Pulmonar/fisiología , Valores de Referencia , Reproducibilidad de los Resultados , Relación Ventilacion-Perfusión/fisiología
12.
Magn Reson Med ; 84(3): 1518-1525, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32072674

RESUMEN

PURPOSE: To evaluate the sensitivity of stimulated-echo acquisition mode (STEAM) and pulsed-gradient spin-echo (PGSE) diffusion tensor imaging (DTI) acquisitions with different diffusion times for measuring renal tissue anisotropy. METHODS: Twelve healthy volunteers underwent an MRI examination at a 3T scanner including STEAM and PGSE DTI with variable diffusion times Δ (20.3, 37 and 125 ms). Three volunteers were scanned twice to test the reproducibility for repeated examinations. Diffusion parameters fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the automatically segmented cortical and medullary regions of interests in both kidneys were calculated and averaged over all subjects for further analysis. Moreover, 5-grade qualitative evaluation of the FA and ADC maps from each sequence was conducted by two experienced radiologists in a consensus. RESULTS: The cortex-medulla difference in the STEAM sequence was significantly higher than that in PGSE with short ∆ = 20.3 ms (P < 0.001) and in PGSE with intermediate ∆ = 37 ms (P < 0.05) diffusion times. Reproducibility of the FA/ADC measurements was very good and comparable for all acquisition modes investigated. For the FA maps, the PGSE sequence with intermediate diffusion time scored highest in the subjective visual assessment of radiologists. CONCLUSION: The delineation of anisotropy in renal tissue is depending on the used diffusion time of the DTI sequence. A PGSE acquisition at a diffusion time of about 37 ms provides reproducible results with optimal corticomedullary contrast in FA and ADC maps and good image quality.


Asunto(s)
Imagen de Difusión Tensora , Riñón , Anisotropía , Imagen de Difusión por Resonancia Magnética , Humanos , Riñón/diagnóstico por imagen , Reproducibilidad de los Resultados
13.
MAGMA ; 33(1): 131-140, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31628564

RESUMEN

PURPOSE: The potential of renal MRI biomarkers has been increasingly recognised, but clinical translation requires more standardisation. The PARENCHIMA consensus project aims to develop and apply a process for generating technical recommendations on renal MRI. METHODS: A task force was formed in July 2018 focused on five methods. A draft process for attaining consensus was distributed publicly for consultation and finalised at an open meeting (Prague, October 2018). Four expert panels completed surveys between October 2018 and March 2019, discussed results and refined the surveys at a face-to-face meeting (Aarhus, March 2019) and completed a second round (May 2019). RESULTS: A seven-stage process was defined: (1) formation of expert panels; (2) definition of the context of use; (3) literature review; (4) collection and comparison of MRI protocols; (5) consensus generation by an approximate Delphi method; (6) reporting of results in vendor-neutral and vendor-specific terms; (7) ongoing review and updating. Application of the process resulted in 166 consensus statements. CONCLUSION: The process generated meaningful technical recommendations across very different MRI methods, while allowing for improvement and refinement as open issues are resolved. The results are likely to be widely supported by the renal MRI community and thereby promote more harmonisation.


Asunto(s)
Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Nefrología/normas , Investigación Biomédica Traslacional/normas , Biomarcadores/metabolismo , Consenso , Técnica Delphi , Europa (Continente) , Testimonio de Experto , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/tendencias , Nefrología/tendencias , Estándares de Referencia , Encuestas y Cuestionarios , Investigación Biomédica Traslacional/tendencias , Estados Unidos
15.
MAGMA ; 33(1): 177-195, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31676990

RESUMEN

OBJECTIVES: Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. MATERIALS AND METHODS: Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. RESULTS: Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65-74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. DISCUSSION: The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field.


Asunto(s)
Biomarcadores/metabolismo , Imagen de Difusión por Resonancia Magnética , Riñón/diagnóstico por imagen , Investigación Biomédica Traslacional , Algoritmos , Consenso , Técnica Delphi , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Riñón/metabolismo , Modelos Estadísticos , Movimiento (Física) , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
16.
MAGMA ; 33(1): 141-161, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31833014

RESUMEN

OBJECTIVES: This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.


Asunto(s)
Circulación Cerebrovascular , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Marcadores de Spin , Investigación Biomédica Traslacional/tendencias , Algoritmos , Consenso , Técnica Delphi , Imagen Eco-Planar , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Trasplante de Riñón , Angiografía por Resonancia Magnética , Estudios Multicéntricos como Asunto , Perfusión , Arteria Renal/diagnóstico por imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
17.
Magn Reson Med ; 82(3): 935-947, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31004385

RESUMEN

PURPOSE: To characterize the proton exchange in aqueous urea solutions using a modified version of the WEX II filter at high magnetic field, and to assess the feasibility of performing quantitative urea CEST MRI on a 3T clinical MR system. METHODS: In order to study the dependence of the exchange-rate constant ksw of urea as a function of pH and T, the WEX-spectra were acquired at 600 MHz from urea solutions in a pH range from 6.4 to 8.0 and a temperature range from T=22∘C to 37∘C . The CEST experiments were performed on a 3T MRI scanner by applying a train of 50 Gaussian-shaped pulses, each 100-millisecond long with a spacing of 100 milliseconds, for saturation. Exchange rates of urea were calculated using the (extended) AREX metric. RESULTS: The results showed that proton exchange in aqueous urea solutions is acid and base catalyzed with the rate constants: ka=(9.95±1.1)×106 l/(mol·s) and kb=(6.21±0.21)×106 l/(mol·s), respectively. Since the urea protons undergo a slow exchange with water protons, the CEST effect of urea can be observed efficiently at 3T. However, in neutral solutions the exchange rate of urea is minimal and cannot be estimated using the quantitative CEST approach. CONCLUSIONS: By means of the WEX-spectroscopy, the kinetic parameters of the proton exchange in urea solutions have been determined. It was also possible to estimate the exchange rates of urea in a broad range of pH values using the CEST method at a clinical scanner.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Protones , Procesamiento de Señales Asistido por Computador , Urea/química , Agua/química , Fantasmas de Imagen
19.
J Magn Reson Imaging ; 47(1): 160-167, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28471524

RESUMEN

PURPOSE: To evaluate the feasibility of renal diffusion quantification using the Padé exponent model (PEM) in healthy subjects. MATERIALS AND METHODS: Diffusion measurements were completed in 10 healthy subjects (mean age, 32.4 ± 8.9 years) on a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany). A respiratory-triggered echo planar imaging sequence (15 slices with 6 mm thickness; 16 b-values [0-750 s/mm2 ]; three diffusion directions; field of view: 400 × 375 mm; Matrix 192 × 192; repetition time/echo time: 3000/74 ms) was acquired in the coronal direction. Parameter maps were calculated for the monoexponential, biexponential, kurtosis models, and the PEM. A regression analysis using an R2 -test and corrected Akaike information criterion (AICc) was performed to identify the best mathematical fitting to the measured diffusion-weighted imaging signal decay. RESULTS: The mathematical accuracy of the PEM was significantly higher than for the other three-parameter and the monoexponential model (P < 0.05), which enables more precise information about the deviation of the Gaussian behavior of the diffusion signal by the PEM. The biexponential model showed better fitting to the diffusion signal (medullar Rbi2 0.989 ± 0.008, AICcbi 113.3 ± 6.6; cortical Rbi2 0.992 ± 0.006, AICcbi 113.3 ± 5.2) than the three-parameter models (medullar RPadé2 0.965 ± 0.016, AICcPadé 122.6 ± 6.4, RK2 0.954 ± 0.019, AICcK 128.5 ± 6.0; cortical RPadé2 0.989 ± 0.005, AICcPadé 116.3 ± 4.4, RK2 0.985 ± 0.007, AICcK 120.4 ± 4.8). The monoexponential model fits least to the diffusion signal in the kidney (medullar Rmono2 0.898 ± 0.039, AICcmono 141.4 ± 5.6; cortical Rmono2 0.961 ± 0.013, AICcmono 135.4 ± 4.8). CONCLUSION: The PEM is a novel promising approach to quantify diffusion properties in the human kidney and might further improve functional renal MR imaging. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:160-167.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Riñón/diagnóstico por imagen , Adulto , Algoritmos , Femenino , Tasa de Filtración Glomerular , Voluntarios Sanos , Humanos , Masculino , Modelos Anatómicos , Modelos Teóricos , Distribución Normal , Adulto Joven
20.
Nephrol Dial Transplant ; 33(suppl_2): ii29-ii40, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137580

RESUMEN

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.


Asunto(s)
Biomarcadores/análisis , Imagen de Difusión por Resonancia Magnética/métodos , Riñón/patología , Guías de Práctica Clínica como Asunto/normas , Insuficiencia Renal Crónica/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA