Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 11(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35159416

RESUMEN

Consumption of plants in the juvenile stage becomes popular because sprouts are easy to grow, and they can be a tasty source of micro- and macro-nutrients and various phytochemicals. However, some environmental factors during sprout growth can affect their characteristics. In this article, we investigated how low temperatures during cultivation (8 °C) and additional exposure to freezing temperatures (-8 °C) affect the physiological status and phytochemical content of kale (Brassica oleracea var. acephala) sprouts compared to the control grown at 21 °C. We conducted five independent laboratory experiments and found that low temperature significantly increased proline content and decreased sprouts yield. In addition, low temperature caused a significant decrease in carotenoid and flavonoid content, while phenolic acid content and total glucosinolates content increased, but individual glucosinolates were differentially affected. Our results indicate that low temperatures affect the physiological status of kale sprouts and affect the content of phytochemicals.

2.
Plants (Basel) ; 10(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199146

RESUMEN

Brassica oleracea var. acephala is known to have a strong tolerance to low temperatures, but the protective mechanisms enabling this tolerance are unknown. Simultaneously, this species is rich in health-promoting compounds such as polyphenols, carotenoids, and glucosinolates. We hypothesize that these metabolites play an important role in the ability to adapt to low temperature stress. To test this hypothesis, we exposed plants to chilling (8 °C) and additional freezing (-8 °C) temperatures under controlled laboratory conditions and determined the levels of proline, chlorophylls, carotenoids, polyphenols, and glucosinolates. Compared with that of the control (21 °C), the chilling and freezing temperatures increased the contents of proline, phenolic acids, and flavonoids. Detailed analysis of individual glucosinolates showed that chilling increased the total amount of aliphatic glucosinolates, while freezing increased the total amount of indolic glucosinolates, including the most abundant indolic glucosinolate glucobrassicin. Our data suggest that glucosinolates are involved in protection against low temperature stress. Individual glucosinolate species are likely to be involved in different protective mechanisms because they show different accumulation trends at chilling and freezing temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA