Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nano Lett ; 22(2): 768-774, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078323

RESUMEN

The fabrication of multifunctional switches is a fundamental step in the development of nanometer-scale molecular spintronic devices. The anchoring of active organic radicals on gold nanoparticles (AuNPs) surface is little studied and the realization of AuNPs-based switches remains extremely challenging. We report the first demonstration of a surface molecular switch based on AuNPs decorated with persistent perchlorotriphenylmethyl (PTM) radicals. The redox properties of PTM are exploited to fabricate electrochemical switches with optical and magnetic responses, showing high stability and reversibility. Electronic interaction between the radicals and the gold surface is investigated by UV-vis, showing a very broad absorption band in the near-infrared (NIR) region, which becomes more intense when PTMs are reduced to anionic phase. By using multiple experimental techniques, we demonstrate that this interaction is likely favored by the preferentially flat orientation of PTM ligands on the metallic NP surface, as confirmed by first-principles simulations.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Magnetismo , Nanopartículas del Metal/química , Oxidación-Reducción , Marcadores de Spin
2.
Biomacromolecules ; 23(7): 2767-2777, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35749573

RESUMEN

Simultaneously being a nonradiative and noninvasive technique makes magnetic resonance imaging (MRI) one of the highly required imaging approaches for the early diagnosis and follow-up of tumors, specifically for brain cancer. Paramagnetic gadolinium (Gd)-based contrast agents (CAs) are the most widely used ones in brain MRI acquisitions with special interest when assessing blood-brain barrier (BBB) integrity, a characteristic of high-grade tumors. However, alternatives to Gd-based contrast agents (CAs) are highly required to overcome their established toxicity. Organic radicals anchored on a dendrimer macromolecule surface (radical dendrimers) are promising alternatives since they also exhibit paramagnetic properties and can act as T1 CAs like Gd-based CAs while being organic species (mitigating concerns about toxic metal accumulation). Here, we studied the third generation of a water-soluble family of poly(phosphorhydrazone) radical dendrimers, with 48 PROXYL radical units anchored on their branches, exploring their potential of ex vivo and in vivo contrast enhancement in brain tumors (in particular, of immunocompetent, orthotopic GL261 murine glioblastoma (GB)). Remarkably, this radical species provides suitable contrast enhancement on murine GL261 GB tumors, which was comparable to that of commercial Gd-based CAs (at standard dose 0.1 mmol/kg), even at its 4 times lower administered dose (0.025 mmol/kg). Importantly, no signs of toxicity were detected in vivo. In addition, it showed a selective accumulation in brain tumor tissues, exhibiting longer retention within the tumor, which allows performing imaging acquisition over longer time frames (≥2.5 h) as opposed to Gd chelates. Finally, we observed high stability of the radicals in biological media, on the order of hours instead of minutes, characteristic of the isolated radicals. All of these features allow us to suggest that the G3-Tyr-PROXYL-ONa radical dendrimer could be a viable alternative to metal-based MRI contrast agents, particularly on MRI analysis of GB, representing, to the best of our knowledge, the first case of organic radical species used for this purpose and one of the very few examples of these types of radical species working as MRI CAs in vivo.


Asunto(s)
Neoplasias Encefálicas , Dendrímeros , Glioblastoma , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste , Radicales Libres , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Metales , Ratones
3.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669016

RESUMEN

The search for new biomedical applications of dendrimers has promoted the synthesis of new radical-based molecules. Specifically, obtaining radical dendrimers has opened the door to their use in various fields such as magnetic resonance imaging, as anti-tumor or antioxidant agents, or the possibility of developing new types of devices based on the paramagnetic properties of organic radicals. Herein, we present a mini review of radical dendrimers based on polyphosphorhydrazone, a new type of macromolecule with which, thanks to their versatility, new metal-free contrast agents are being obtained, among other possible applications.


Asunto(s)
Dendrímeros/química , Hidrazonas/química , Organofosfonatos/química , Polímeros/química , Dendrímeros/síntesis química , Radicales Libres/síntesis química , Radicales Libres/química , Humanos , Hidrazonas/síntesis química , Estructura Molecular , Organofosfonatos/síntesis química , Polímeros/síntesis química
4.
Angew Chem Int Ed Engl ; 60(33): 17887-17892, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34086392

RESUMEN

A new compound (1) formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry, UV/Vis-NIR, IR, EPR, and transient spectroscopy. Self-assembly of 1 on a Au(111) surface has been investigated by scanning tunneling microscopy. Experiments have been rationalized by quantum chemical calculations. 1 exhibits a unique charge distribution in its anionic form, with a gradient of charge yielding a neat molecular in-plane electric dipole momentum, which transforms out-of-plane after surface deposition due to twisted→folded conformational change and to partial charge transfer from Au(111). Intermolecular van der Waals interactions and antiparallel trapezoidal shape fitting lead to the formation of an optimal dense on Au(111) two-dimensional assembly of 1.

5.
Chemphyschem ; 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29744989

RESUMEN

Two generations of polyphosphorhydrazone (PPH) dendrimers were synthesized and fully functionalized with TEMPO radicals via acrylamido or imino group linkers to evaluate the impact of the linker substitution on the radical-radical interactions. A drastic change in the way that the radicals interacted among them was observed by EPR and CV studies: while radicals in Gn -imino-TEMPO dendrimers presented a strong spin-spin interaction, in the Gn -acrylamido-TEMPO ones they acted mainly as independent radicals. This shows that these interactions could be tuned by the solely substitution of the radical linker, opening the perspective of controlling and modulating the extension of these interactions depending on each application. The chemical properties of the linker strongly influence the spin-spin exchange between pendant radicals.

6.
J Am Chem Soc ; 139(2): 686-692, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27997166

RESUMEN

Charge transfer/transport in molecular wires over varying distances is a subject of great interest. The feasible transport mechanisms have been generally accounted for on the basis of tunneling or superexchange charge transfer operating over small distances which progressively gives way to hopping transport over larger distances. The underlying molecular sequential steps that likely take place during hopping and the operative mechanism occurring at intermediate distances have received much less attention given the difficulty in assessing detailed molecular-level information. We describe here the operating mechanisms for unimolecular electron transfer/transport in the ground state of radical-anion mixed-valence derivatives occurring between their terminal perchlorotriphenylmethyl/ide groups through thiophene-vinylene oligomers that act as conjugated wires of increasing length up to 53 Å. The unique finding here is that the net transport of the electron in the larger molecular wires is initiated by an electron-hole dissociation intermediated by hole delocalization (conformationally assisted and thermally dependent) forming transient mobile polaronic states in the bridge that terminate by an electron-hole recombination at the other wire extreme. On the contrary, for the shorter radical-anions our results suggest that a flickering resonance mechanism which is intermediate between hopping and superexchange is the operative one. We support these mechanistic interpretations by applying the pertinent biased kinetic models of the charge/spin exchange rates determined by electron paramagnetic resonance and by molecular structural level information obtained from UV-vis and Raman spectroscopies and by quantum chemical modeling.

7.
Chemistry ; 22(5): 1805-15, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26743879

RESUMEN

A study of the magnetic and electrochemical properties of a TEMPO-substituted disulfide diradical in three different environments was carried out: in solution, in the crystal, and as a self-assembled monolayer (SAM) on an Au(111) substrate, and the relationship between them was explored. In solution, this flexible diradical shows a strong spin-exchange interaction between the two nitroxide functions that depends on the temperature and solvent. Structural, dynamic, and thermodynamic information has been extracted from the EPR spectra of this dinitroxide. The magnetic interactions in the crystal include intra- and intermolecular contributions, which have been studied separately and shown to be antiferromagnetic in both cases. Finally, we demonstrate that both the magnetic and electrochemical properties are preserved upon chemisorption of the diradical on a gold surface. The resulting SAM displayed anisotropic magnetic properties, and angle-resolved EPR spectra of the monocrystal allowed a rough determination of the orientation of the molecules in the SAM.

8.
Chemphyschem ; 16(15): 3302-7, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26489060

RESUMEN

A novel triradical compound with a P=S core and three branches functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radicals is synthesized and characterized by IR, (1) H NMR, (31) P NMR, and EPR spectroscopy and MALDI-TOF mass spectrometry, and its chemical structure is confirmed by X-ray diffraction analysis. The triradical shows neither spin exchange interactions between its radical units nor detectable dipolar interactions. This is consistent with the separation between the radical units found in its X-ray diffraction structure, and discounts the existence of intramolecular interactions. This conclusion is confirmed by an EPR concentration study. The concentration at which intermolecular interactions start to appear is determined (5×10(-3) m) and this concentration should be taken into account as a higher concentration limit when studies on intramolecular radical-radical interactions in polyradicals with similar structure are required. SQUID magnetometry analysis of the compound shows antiferromagnetic interactions between the spin carriers of different molecules; that is, antiferromagnetic intermolecular interactions.


Asunto(s)
Óxidos N-Cíclicos/química , Magnetismo , Modelos Moleculares , Difracción de Rayos X
9.
J Chem Phys ; 140(16): 164903, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24784306

RESUMEN

We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization. These items are addressed by using the "oligomer approach" in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π-conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.


Asunto(s)
Conformación Molecular , Espectrometría Raman , Compuestos de Tritilo/química , Compuestos de Vinilo/química , Electrones , Temperatura
10.
J Am Chem Soc ; 135(7): 2620-7, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23339278

RESUMEN

We report experimental evidence indicating that the nature of the interaction established between HAT(CN)(6), a well-known strong electron acceptor aromatic compound, with mono- or polyatomic anions switches from the almost exclusive formation of reversible anion-π complexes, featuring a markedly charge transfer (CT) or formal electron-transfer (ET) character, to the quantitative and irreversible net production of the anion radical [HAT(CN)(6)](•-) and the dianion [HAT(CN)(6)](2-) species. The preferred mode of interaction is dictated by the electron donor abilities of the interacting anion. Thus, weaker Lewis basic anions such as Br(-) or I(-) are prone to form mainly anion-π complexes. On the contrary, stronger Lewis basic F(-) or (-)OH anions display a net ET process. The ET process can be either thermal or photoinduced depending on the HOMO/LUMO energy difference between the electron donor (anion) and the electron acceptor (HAT(CN)(6)). These ET processes possibly involve the intermediacy of anion-π complexes having strong ET character and producing an ion-pair radical complex. We hypothesize that the irreversible dissociation of the pair of radicals forming the solvent-caged complex is caused by the reduced stability (high reactivity) of the radical resulting from the anion.


Asunto(s)
Compuestos Aza/química , Crisenos/química , Electrones , Nitrilos/química , Quinoxalinas/química , Aniones , Transporte de Electrón , Modelos Moleculares
11.
J Am Chem Soc ; 135(18): 6958-67, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23517105

RESUMEN

An extensive investigation of aggregation phenomena occurring in solution for a family of electron donor-acceptor derivatives, based on polychlorotriphenylmethyl radicals (PTM) linked via a vinylene-bridge to tetrathiafulvalene (TTF) units, is presented. A large set of temperature and/or concentration dependent optical absorption and electron spin resonance (ESR) spectra in a solution of dyads bearing different number of electrons and/or with a hydrogenated PTM residue offer reliable information on the formation of homo dimers and mixed valence dimers. The results shed light on the reciprocal influence of intramolecular electron transfer (IET) within a dyad and the intermolecular charge transfer (CT) occurring in a dimer between the TTF residues and are rationalized based on a theoretical model that describes both interactions.


Asunto(s)
Compuestos Heterocíclicos/química , Compuestos de Tritilo/química , Radicales Libres/química , Estructura Molecular , Soluciones
12.
Chemistry ; 19(49): 16656-64, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24281812

RESUMEN

This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)-based acceptor-donor-acceptor triads (BQ-TTF-BQ and BTCNQ-TTF-BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano-p-quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum-chemical calculations. Emphasis is placed on the mixed-valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ-TTF-BQ and BTCNQ-TTF-BTCNQ triads in their radical anion states behave as class-II mixed-valence compounds with significant electronic communication between the acceptor moieties. Density functional theory calculations (BLYP35/cc-pVTZ), taking into account the solvent effects, predict charge-localised species (BQ(.-)-TTF-BQ and BTCNQ(.-)-TTF-BTCNQ) as the most stable structures for the radical anion states of both triads. A stronger localisation is found both experimentally and theoretically for the BTCNQ-TTF-BTCNQ anion, in accordance with the more electron-withdrawing character of the BTCNQ acceptor. CASSCF/CASPT2 calculations suggest that the low-energy, broad absorption bands observed experimentally for the BQ-TTF-BQ and BTCNQ-TTF-BTCNQ radical anions are associated with the intervalence charge transfer (IV-CT) electronic transition and two nearby donor-to-acceptor CT excitations. The study highlights the molecular efficiency of the electron-donor TTF unit as a molecular wire connecting two acceptor redox centres.


Asunto(s)
Compuestos Heterocíclicos/química , Derivados del Benceno/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electrones , Fleroxacino/análogos & derivados , Fleroxacino/química , Modelos Moleculares , Naftoquinonas/química , Nitrilos/química , Oxidación-Reducción
13.
Chemphyschem ; 14(8): 1670-5, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23553876

RESUMEN

We show that electron transfer from the perchlorotriphenylmethide anion (PTM(-)) to Y@C82(C2v) is an instantaneous process, suggesting potential applications for using PTM(-) to perform redox titrations of numerous endohedral metallofullerenes. The first representative of a Y@C82-based salt containing the complex cation was prepared by treating Y@C82(C2v) with the [K(+)([18]crown-6)]PTM(-) salt. The synthesis developed involves the use of the [K(+)([18]crown-6)]PTM(-) salt as a provider of both a complex cation and an electron-donating anion that is able to reduce Y@C82 C2v). For the first time, the molar absorption coefficients for neutral and anionic forms of the pure isomer of Y@C82(C2v) were determined in organic solvents with significantly different polarities.


Asunto(s)
Fulerenos/química , Itrio/química , Aniones/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Sales (Química)/química
14.
Pharmaceutics ; 15(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376224

RESUMEN

Dual or multimodal imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy in disease diagnosis by imaging techniques. Two imaging techniques that are complementary and do not use ionizing radiation are magnetic resonance imaging (MRI) and optical fluorescence imaging (OFI). Herein, we prepared metal-free organic species based on dendrimers with magnetic and fluorescent properties as proof-of-concept of bimodal probes for potential MRI and OFI applications. We used oligo(styryl)benzene (OSB) dendrimers core that are fluorescent on their own, and TEMPO organic radicals anchored on their surfaces, as the magnetic component. In this way, we synthesized six radical dendrimers and characterized them by FT-IR, 1H NMR, UV-Vis, MALDI-TOF, SEC, EPR, fluorimetry, and in vitro MRI. Importantly, it was demonstrated that the new dendrimers present two properties: on one hand, they are paramagnetic and show the ability to generate contrast by MRI in vitro, and, on the other hand, they also show fluoresce emission. This is a remarkable result since it is one of the very few cases of macromolecules with bimodal magnetic and fluorescent properties using organic radicals as the magnetic probe.

15.
J Colloid Interface Sci ; 631(Pt A): 202-211, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36375300

RESUMEN

HYPOTHESIS: Quatsome nanovesicles, formed through the self-assembly of cholesterol (CHOL) and cetyltrimethylammonium bromide (CTAB) in water, have shown long-term stability in terms of size and morphology, while at the same time exhibiting high CHOL-CTAB intermolecular binding energies. We hypothesize that CHOL/CTAB quatsomes are indeed thermodynamically stable nanovesicles, and investigate the mechanism underlying their formation. EXPERIMENTS: A systematic study was performed to determine whether CHOL/CTAB quatsomes satisfy the experimental requisites of thermodynamically stable vesicles. Coarse-grain molecular dynamics simulations were used to investigate the molecular organization in the vesicle membrane, and the characteristics of the simulated vesicle were corroborated with experimental data obtained by cryo-electron microscopy, small- and wide-angle X-ray scattering, and multi-angle static light scattering. FINDINGS: CHOL/CTAB quatsomes fulfill the requisites of thermodynamically stable nanovesicles, but they do not exhibit the classical membrane curvature induced by a composition asymmetry between the bilayer leaflets, like catanionic nanovesicles. Instead, CHOL/CTAB quatsomes are formed through the association of intrinsically planar bilayers in a faceted vesicle with defects, indicating that distortions in the organization and orientation of molecules can play a major role in the formation of thermodynamically stable nanovesicles.


Asunto(s)
Compuestos de Cetrimonio , Simulación de Dinámica Molecular , Cetrimonio , Microscopía por Crioelectrón , Compuestos de Cetrimonio/química , Colesterol/química , Membrana Dobles de Lípidos/química
16.
Angew Chem Int Ed Engl ; 51(44): 11024-8, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23037801

RESUMEN

An organic switch: An open-shell dyad, consisting of an electron acceptor perchlorotriphenylmethyl radical unit linked to an electron π-donor tetrathiafulvalene unit through a vinylene π-bridge, was synthesized (see picture). The self-assembly of the dyad in solution induced by its intramolecular electron transfer was studied.


Asunto(s)
Electrones , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Estructura Molecular , Temperatura
17.
J Am Chem Soc ; 133(15): 5818-33, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21446654

RESUMEN

Radical anions 1(-•)-5(-•), showing different lengths and incorporating up to five p-phenylenevinylene (PPV) bridges between two polychlorinated triphenylmethyl units, have been prepared by chemical or electrochemical reductions from the corresponding diradicals 1-5 which were prepared using Wittig-Horner-type chemistry. Such radical anions enabled us to study, by means of UV-vis-NIR and variable-temperature electron spin resonance spectroscopies, the long-range intramolecular electron transfer (IET) phenomena in their ground states, probing the influence of increasing the lengths of the bridges without the need of using an external bias to promote IET. The temperature dependence of the IET rate constants of mixed-valence species 1(-•)-5(-•) revealed the presence of two different regimes at low and high temperatures in which the mechanisms of electron tunneling via superexchange and thermally activated hopping are competing. Both mechanisms occur to different extents, depending on the sizes of the radical anions, since the lengths of the oligo-PPV bridges notably influence the tunneling efficiency and the activation energy barriers of the hopping processes, the barriers diminishing when the lengths are increased. The nature of solvents also modifies the IET rates by means of the interactions between the oligo-PPV bridges and the solvents. Finally, in the shortest compounds 1(-•) and 2(-•), the IET induced optically through the superexchange mechanism can also be observed by the exhibited intervalence bands, whose intensities decrease with the length of the PPV bridge.


Asunto(s)
Polivinilos/química , Aniones/química , Electroquímica , Transporte de Electrón , Radicales Libres/química , Halogenación , Modelos Moleculares , Oxidación-Reducción
18.
J Phys Chem Lett ; 12(26): 6159-6164, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184906

RESUMEN

Two redox and magnetically active perchlorotriphenylmethyl (•PTM) radical units have been connected as end-capping groups to a bis(phenylene)diyne chain through vinylene linkers. Negative and positive charged species have been generated, and the influence of the bridge on their stabilization is discussed. Partial reduction of the electron-withdrawing •PTM radicals results in a class-II mixed-valence system with the negative charge located on the terminal PTM units, proving the efficiency of the conjugated chain for the electron transport between the two terminal sites. Counterintuitively, the oxidation process does not occur along the electron-rich bridge but on the vinylene units. The •PTM radicals play a key role in the stabilization of the cationic species, promoting the generation of quinoidal ring segments.

19.
Pharmaceutics ; 12(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823903

RESUMEN

Finding alternatives to gadolinium (Gd)-based contrast agents (CA) with the same or even better paramagnetic properties is crucial to overcome their established toxicity. Herein we describe the synthesis and characterization of entirely organic metal-free paramagnetic macromolecules based on biocompatible oligoethylene glycol dendrimers fully functionalized with 5 and 20 organic radicals (OEG Gn-PROXYL (n = 0, 1) radical dendrimers) with the aim to be used as magnetic resonance imaging (MRI) contrast agents. Conferring high water solubility on such systems is often a concern, especially in large generation dendrimers. Our approach to overcome such an issue in this study is by synthesizing dendrimers with highly water-soluble branches themselves. In this work, we show that the highly water-soluble OEG Gn-PROXYL (n = 0, 1) radical dendrimers obtained showed properties that convert them in good candidates to be studied as contrast agents for MRI applications like diagnosis and follow-up of infectious diseases, among others. Importantly, with the first generation radical dendrimer, a similar r1 relaxivity value (3.4 mM-1s-1) in comparison to gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) used in clinics (3.2 mM-1s-1, r.t. 7T) has been obtained, and it has been shown to not be cytotoxic, avoiding the toxicity risks associated with the unwanted accumulation of Gd in the body.

20.
Dalton Trans ; 49(29): 10011-10016, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32643714

RESUMEN

The chance to have persistent organic radicals in combination with metals has attracted much interest since it offers the possibility of having new functional molecules with multiple open-shell elements. In this study, we report the synthesis of two tripodal tris(2-pyridyl)methylamine ligands (TPMA) functionalized with nitronyl nitroxide persistent radicals. The newly formed ligands have been used to coordinate zinc(ii), copper(ii), iron(ii) and cobalt(ii). The resulting complexes have been investigated by means of electron paramagnetic resonance (EPR), ESI-MS, FT-IR spectroscopy and X-ray diffraction. An electron reduction of the N-O radical moiety has been observed, depending on the metal used for the formation of the complex and the reaction conditions. We have observed small differences in the EPR spectra depending on the meta or para position of the radical moiety in the complex structure and some antiferromagnetic interactions between the paramagnetic M(ii) ions and the radical species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA